k256/schnorr/
verifying.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
//! Taproot Schnorr verifying key.

use super::{tagged_hash, Signature, CHALLENGE_TAG};
use crate::{AffinePoint, FieldBytes, ProjectivePoint, PublicKey, Scalar};
use elliptic_curve::{
    bigint::U256,
    group::prime::PrimeCurveAffine,
    ops::{LinearCombination, Reduce},
    point::DecompactPoint,
};
use sha2::{
    digest::{consts::U32, FixedOutput},
    Digest, Sha256,
};
use signature::{hazmat::PrehashVerifier, DigestVerifier, Error, Result, Verifier};

#[cfg(feature = "serde")]
use serdect::serde::{de, ser, Deserialize, Serialize};

/// Taproot Schnorr verifying key.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct VerifyingKey {
    /// Inner public key
    pub(super) inner: PublicKey,
}

impl VerifyingKey {
    /// Borrow the inner [`AffinePoint`] this type wraps.
    pub fn as_affine(&self) -> &AffinePoint {
        self.inner.as_affine()
    }

    /// Serialize as bytes.
    pub fn to_bytes(&self) -> FieldBytes {
        self.as_affine().x.to_bytes()
    }

    /// Compute Schnorr signature.
    ///
    /// # ⚠️ Warning
    ///
    /// This is a low-level interface intended only for unusual use cases
    /// involving verifying pre-hashed messages, or "raw" messages where the
    /// message is not hashed at all prior to being used to generate the
    /// Schnorr signature.
    ///
    /// The preferred interfaces are the [`DigestVerifier`] or [`PrehashVerifier`] traits.
    pub fn verify_raw(
        &self,
        message: &[u8],
        signature: &Signature,
    ) -> core::result::Result<(), Error> {
        let (r, s) = signature.split();

        let e = <Scalar as Reduce<U256>>::reduce_bytes(
            &tagged_hash(CHALLENGE_TAG)
                .chain_update(signature.r.to_bytes())
                .chain_update(self.to_bytes())
                .chain_update(message)
                .finalize(),
        );

        let R = ProjectivePoint::lincomb(
            &ProjectivePoint::GENERATOR,
            s,
            &self.inner.to_projective(),
            &-e,
        )
        .to_affine();

        if R.is_identity().into() || R.y.normalize().is_odd().into() || R.x.normalize() != *r {
            return Err(Error::new());
        }

        Ok(())
    }

    /// Parse verifying key from big endian-encoded x-coordinate.
    pub fn from_bytes(bytes: &[u8]) -> Result<Self> {
        let maybe_affine_point = AffinePoint::decompact(FieldBytes::from_slice(bytes));
        let affine_point = Option::from(maybe_affine_point).ok_or_else(Error::new)?;
        PublicKey::from_affine(affine_point)
            .map_err(|_| Error::new())?
            .try_into()
    }
}

//
// `*Verifier` trait impls
//

impl<D> DigestVerifier<D, Signature> for VerifyingKey
where
    D: Digest + FixedOutput<OutputSize = U32>,
{
    fn verify_digest(&self, digest: D, signature: &Signature) -> Result<()> {
        self.verify_prehash(digest.finalize_fixed().as_slice(), signature)
    }
}

impl PrehashVerifier<Signature> for VerifyingKey {
    fn verify_prehash(
        &self,
        prehash: &[u8],
        signature: &Signature,
    ) -> core::result::Result<(), Error> {
        self.verify_raw(prehash, signature)
    }
}

impl Verifier<Signature> for VerifyingKey {
    fn verify(&self, msg: &[u8], signature: &Signature) -> Result<()> {
        self.verify_digest(Sha256::new_with_prefix(msg), signature)
    }
}

//
// Other trait impls
//

impl From<VerifyingKey> for AffinePoint {
    fn from(vk: VerifyingKey) -> AffinePoint {
        *vk.as_affine()
    }
}

impl From<&VerifyingKey> for AffinePoint {
    fn from(vk: &VerifyingKey) -> AffinePoint {
        *vk.as_affine()
    }
}

impl From<VerifyingKey> for PublicKey {
    fn from(vk: VerifyingKey) -> PublicKey {
        vk.inner
    }
}

impl From<&VerifyingKey> for PublicKey {
    fn from(vk: &VerifyingKey) -> PublicKey {
        vk.inner
    }
}

impl TryFrom<PublicKey> for VerifyingKey {
    type Error = Error;

    fn try_from(public_key: PublicKey) -> Result<VerifyingKey> {
        if public_key.as_affine().y.normalize().is_even().into() {
            Ok(Self { inner: public_key })
        } else {
            Err(Error::new())
        }
    }
}

impl TryFrom<&PublicKey> for VerifyingKey {
    type Error = Error;

    fn try_from(public_key: &PublicKey) -> Result<VerifyingKey> {
        Self::try_from(*public_key)
    }
}

#[cfg(feature = "serde")]
impl Serialize for VerifyingKey {
    fn serialize<S>(&self, serializer: S) -> core::result::Result<S::Ok, S::Error>
    where
        S: ser::Serializer,
    {
        self.inner.serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for VerifyingKey {
    fn deserialize<D>(deserializer: D) -> core::result::Result<Self, D::Error>
    where
        D: de::Deserializer<'de>,
    {
        VerifyingKey::try_from(PublicKey::deserialize(deserializer)?).map_err(de::Error::custom)
    }
}