p256/arithmetic/
scalar.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
//! Scalar field arithmetic modulo n = 115792089210356248762697446949407573529996955224135760342422259061068512044369

#[cfg_attr(target_pointer_width = "32", path = "scalar/scalar32.rs")]
#[cfg_attr(target_pointer_width = "64", path = "scalar/scalar64.rs")]
mod scalar_impl;

use self::scalar_impl::barrett_reduce;
use crate::{FieldBytes, NistP256, SecretKey, ORDER_HEX};
use core::{
    fmt::{self, Debug},
    iter::{Product, Sum},
    ops::{Add, AddAssign, Mul, MulAssign, Neg, Shr, ShrAssign, Sub, SubAssign},
};
use elliptic_curve::{
    bigint::{prelude::*, Limb, U256},
    group::ff::{self, Field, PrimeField},
    ops::{Invert, Reduce, ReduceNonZero},
    rand_core::RngCore,
    scalar::{FromUintUnchecked, IsHigh},
    subtle::{
        Choice, ConditionallySelectable, ConstantTimeEq, ConstantTimeGreater, ConstantTimeLess,
        CtOption,
    },
    zeroize::DefaultIsZeroes,
    Curve, ScalarPrimitive,
};

#[cfg(feature = "bits")]
use {crate::ScalarBits, elliptic_curve::group::ff::PrimeFieldBits};

#[cfg(feature = "serde")]
use serdect::serde::{de, ser, Deserialize, Serialize};

/// Constant representing the modulus
/// n = FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2 FC632551
pub(crate) const MODULUS: U256 = NistP256::ORDER;

/// `MODULUS / 2`
const FRAC_MODULUS_2: Scalar = Scalar(MODULUS.shr_vartime(1));

/// MU = floor(2^512 / n)
///    = 115792089264276142090721624801893421302707618245269942344307673200490803338238
///    = 0x100000000fffffffffffffffeffffffff43190552df1a6c21012ffd85eedf9bfe
pub const MU: [u64; 5] = [
    0x012f_fd85_eedf_9bfe,
    0x4319_0552_df1a_6c21,
    0xffff_fffe_ffff_ffff,
    0x0000_0000_ffff_ffff,
    0x0000_0000_0000_0001,
];

/// Scalars are elements in the finite field modulo n.
///
/// # Trait impls
///
/// Much of the important functionality of scalars is provided by traits from
/// the [`ff`](https://docs.rs/ff/) crate, which is re-exported as
/// `p256::elliptic_curve::ff`:
///
/// - [`Field`](https://docs.rs/ff/latest/ff/trait.Field.html) -
///   represents elements of finite fields and provides:
///   - [`Field::random`](https://docs.rs/ff/latest/ff/trait.Field.html#tymethod.random) -
///     generate a random scalar
///   - `double`, `square`, and `invert` operations
///   - Bounds for [`Add`], [`Sub`], [`Mul`], and [`Neg`] (as well as `*Assign` equivalents)
///   - Bounds for [`ConditionallySelectable`] from the `subtle` crate
/// - [`PrimeField`](https://docs.rs/ff/latest/ff/trait.PrimeField.html) -
///   represents elements of prime fields and provides:
///   - `from_repr`/`to_repr` for converting field elements from/to big integers.
///   - `multiplicative_generator` and `root_of_unity` constants.
/// - [`PrimeFieldBits`](https://docs.rs/ff/latest/ff/trait.PrimeFieldBits.html) -
///   operations over field elements represented as bits (requires `bits` feature)
///
/// Please see the documentation for the relevant traits for more information.
///
/// # `serde` support
///
/// When the `serde` feature of this crate is enabled, the `Serialize` and
/// `Deserialize` traits are impl'd for this type.
///
/// The serialization is a fixed-width big endian encoding. When used with
/// textual formats, the binary data is encoded as hexadecimal.
#[derive(Clone, Copy, Default)]
pub struct Scalar(pub(crate) U256);

impl Scalar {
    /// Zero scalar.
    pub const ZERO: Self = Self(U256::ZERO);

    /// Multiplicative identity.
    pub const ONE: Self = Self(U256::ONE);

    /// Returns the SEC1 encoding of this scalar.
    pub fn to_bytes(&self) -> FieldBytes {
        self.0.to_be_byte_array()
    }

    /// Returns self + rhs mod n
    pub const fn add(&self, rhs: &Self) -> Self {
        Self(self.0.add_mod(&rhs.0, &NistP256::ORDER))
    }

    /// Returns 2*self.
    pub const fn double(&self) -> Self {
        self.add(self)
    }

    /// Returns self - rhs mod n.
    pub const fn sub(&self, rhs: &Self) -> Self {
        Self(self.0.sub_mod(&rhs.0, &NistP256::ORDER))
    }

    /// Returns self * rhs mod n
    pub const fn multiply(&self, rhs: &Self) -> Self {
        let (lo, hi) = self.0.mul_wide(&rhs.0);
        Self(barrett_reduce(lo, hi))
    }

    /// Returns self * self mod p
    pub const fn square(&self) -> Self {
        // Schoolbook multiplication.
        self.multiply(self)
    }

    /// Right shifts the scalar.
    ///
    /// Note: not constant-time with respect to the `shift` parameter.
    pub const fn shr_vartime(&self, shift: usize) -> Scalar {
        Self(self.0.shr_vartime(shift))
    }

    /// Returns the multiplicative inverse of self, if self is non-zero
    pub fn invert(&self) -> CtOption<Self> {
        CtOption::new(self.invert_unchecked(), !self.is_zero())
    }

    /// Returns the multiplicative inverse of self.
    ///
    /// Does not check that self is non-zero.
    const fn invert_unchecked(&self) -> Self {
        // We need to find b such that b * a ≡ 1 mod p. As we are in a prime
        // field, we can apply Fermat's Little Theorem:
        //
        //    a^p         ≡ a mod p
        //    a^(p-1)     ≡ 1 mod p
        //    a^(p-2) * a ≡ 1 mod p
        //
        // Thus inversion can be implemented with a single exponentiation.
        //
        // This is `n - 2`, so the top right two digits are `4f` instead of `51`.
        self.pow_vartime(&[
            0xf3b9_cac2_fc63_254f,
            0xbce6_faad_a717_9e84,
            0xffff_ffff_ffff_ffff,
            0xffff_ffff_0000_0000,
        ])
    }

    /// Exponentiates `self` by `exp`, where `exp` is a little-endian order integer
    /// exponent.
    pub const fn pow_vartime(&self, exp: &[u64]) -> Self {
        let mut res = Self::ONE;

        let mut i = exp.len();
        while i > 0 {
            i -= 1;

            let mut j = 64;
            while j > 0 {
                j -= 1;
                res = res.square();

                if ((exp[i] >> j) & 1) == 1 {
                    res = res.multiply(self);
                }
            }
        }

        res
    }

    /// Is integer representing equivalence class odd?
    pub fn is_odd(&self) -> Choice {
        self.0.is_odd()
    }

    /// Is integer representing equivalence class even?
    pub fn is_even(&self) -> Choice {
        !self.is_odd()
    }
}

impl AsRef<Scalar> for Scalar {
    fn as_ref(&self) -> &Scalar {
        self
    }
}

impl Field for Scalar {
    const ZERO: Self = Self::ZERO;
    const ONE: Self = Self::ONE;

    fn random(mut rng: impl RngCore) -> Self {
        let mut bytes = FieldBytes::default();

        // Generate a uniformly random scalar using rejection sampling,
        // which produces a uniformly random distribution of scalars.
        //
        // This method is not constant time, but should be secure so long as
        // rejected RNG outputs are unrelated to future ones (which is a
        // necessary property of a `CryptoRng`).
        //
        // With an unbiased RNG, the probability of failing to complete after 4
        // iterations is vanishingly small.
        loop {
            rng.fill_bytes(&mut bytes);
            if let Some(scalar) = Scalar::from_repr(bytes).into() {
                return scalar;
            }
        }
    }

    #[must_use]
    fn square(&self) -> Self {
        Scalar::square(self)
    }

    #[must_use]
    fn double(&self) -> Self {
        self.add(self)
    }

    fn invert(&self) -> CtOption<Self> {
        Scalar::invert(self)
    }

    /// Tonelli-Shank's algorithm for q mod 16 = 1
    /// <https://eprint.iacr.org/2012/685.pdf> (page 12, algorithm 5)
    #[allow(clippy::many_single_char_names)]
    fn sqrt(&self) -> CtOption<Self> {
        // Note: `pow_vartime` is constant-time with respect to `self`
        let w = self.pow_vartime(&[
            0x279dce5617e3192a,
            0xfde737d56d38bcf4,
            0x07ffffffffffffff,
            0x07fffffff8000000,
        ]);

        let mut v = Self::S;
        let mut x = *self * w;
        let mut b = x * w;
        let mut z = Self::ROOT_OF_UNITY;

        for max_v in (1..=Self::S).rev() {
            let mut k = 1;
            let mut tmp = b.square();
            let mut j_less_than_v = Choice::from(1);

            for j in 2..max_v {
                let tmp_is_one = tmp.ct_eq(&Self::ONE);
                let squared = Self::conditional_select(&tmp, &z, tmp_is_one).square();
                tmp = Self::conditional_select(&squared, &tmp, tmp_is_one);
                let new_z = Self::conditional_select(&z, &squared, tmp_is_one);
                j_less_than_v &= !j.ct_eq(&v);
                k = u32::conditional_select(&j, &k, tmp_is_one);
                z = Self::conditional_select(&z, &new_z, j_less_than_v);
            }

            let result = x * z;
            x = Self::conditional_select(&result, &x, b.ct_eq(&Self::ONE));
            z = z.square();
            b *= z;
            v = k;
        }

        CtOption::new(x, x.square().ct_eq(self))
    }

    fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self) {
        ff::helpers::sqrt_ratio_generic(num, div)
    }
}

impl PrimeField for Scalar {
    type Repr = FieldBytes;

    const MODULUS: &'static str = ORDER_HEX;
    const NUM_BITS: u32 = 256;
    const CAPACITY: u32 = 255;
    const TWO_INV: Self = Self(U256::from_u8(2)).invert_unchecked();
    const MULTIPLICATIVE_GENERATOR: Self = Self(U256::from_u8(7));
    const S: u32 = 4;
    const ROOT_OF_UNITY: Self = Self(U256::from_be_hex(
        "ffc97f062a770992ba807ace842a3dfc1546cad004378daf0592d7fbb41e6602",
    ));
    const ROOT_OF_UNITY_INV: Self = Self::ROOT_OF_UNITY.invert_unchecked();
    const DELTA: Self = Self(U256::from_u64(33232930569601));

    /// Attempts to parse the given byte array as an SEC1-encoded scalar.
    ///
    /// Returns None if the byte array does not contain a big-endian integer in the range
    /// [0, p).
    fn from_repr(bytes: FieldBytes) -> CtOption<Self> {
        let inner = U256::from_be_byte_array(bytes);
        CtOption::new(Self(inner), inner.ct_lt(&NistP256::ORDER))
    }

    fn to_repr(&self) -> FieldBytes {
        self.to_bytes()
    }

    fn is_odd(&self) -> Choice {
        self.0.is_odd()
    }
}

#[cfg(feature = "bits")]
impl PrimeFieldBits for Scalar {
    #[cfg(target_pointer_width = "32")]
    type ReprBits = [u32; 8];

    #[cfg(target_pointer_width = "64")]
    type ReprBits = [u64; 4];

    fn to_le_bits(&self) -> ScalarBits {
        self.into()
    }

    fn char_le_bits() -> ScalarBits {
        NistP256::ORDER.to_words().into()
    }
}

impl DefaultIsZeroes for Scalar {}

impl Eq for Scalar {}

impl FromUintUnchecked for Scalar {
    type Uint = U256;

    fn from_uint_unchecked(uint: Self::Uint) -> Self {
        Self(uint)
    }
}

impl Invert for Scalar {
    type Output = CtOption<Self>;

    fn invert(&self) -> CtOption<Self> {
        self.invert()
    }

    /// Fast variable-time inversion using Stein's algorithm.
    ///
    /// Returns none if the scalar is zero.
    ///
    /// <https://link.springer.com/article/10.1007/s13389-016-0135-4>
    ///
    /// ⚠️ WARNING!
    ///
    /// This method should not be used with (unblinded) secret scalars, as its
    /// variable-time operation can potentially leak secrets through
    /// sidechannels.
    #[allow(non_snake_case)]
    fn invert_vartime(&self) -> CtOption<Self> {
        let mut u = *self;
        let mut v = Self(MODULUS);
        let mut A = Self::ONE;
        let mut C = Self::ZERO;

        while !bool::from(u.is_zero()) {
            // u-loop
            while bool::from(u.is_even()) {
                u >>= 1;

                let was_odd: bool = A.is_odd().into();
                A >>= 1;

                if was_odd {
                    A += FRAC_MODULUS_2;
                    A += Self::ONE;
                }
            }

            // v-loop
            while bool::from(v.is_even()) {
                v >>= 1;

                let was_odd: bool = C.is_odd().into();
                C >>= 1;

                if was_odd {
                    C += FRAC_MODULUS_2;
                    C += Self::ONE;
                }
            }

            // sub-step
            if u >= v {
                u -= &v;
                A -= &C;
            } else {
                v -= &u;
                C -= &A;
            }
        }

        CtOption::new(C, !self.is_zero())
    }
}

impl IsHigh for Scalar {
    fn is_high(&self) -> Choice {
        self.0.ct_gt(&FRAC_MODULUS_2.0)
    }
}

impl Shr<usize> for Scalar {
    type Output = Self;

    fn shr(self, rhs: usize) -> Self::Output {
        self.shr_vartime(rhs)
    }
}

impl Shr<usize> for &Scalar {
    type Output = Scalar;

    fn shr(self, rhs: usize) -> Self::Output {
        self.shr_vartime(rhs)
    }
}

impl ShrAssign<usize> for Scalar {
    fn shr_assign(&mut self, rhs: usize) {
        *self = *self >> rhs;
    }
}

impl PartialEq for Scalar {
    fn eq(&self, other: &Self) -> bool {
        self.ct_eq(other).into()
    }
}

impl PartialOrd for Scalar {
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Scalar {
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        self.0.cmp(&other.0)
    }
}

impl From<u32> for Scalar {
    fn from(k: u32) -> Self {
        Scalar(k.into())
    }
}

impl From<u64> for Scalar {
    fn from(k: u64) -> Self {
        Scalar(k.into())
    }
}

impl From<u128> for Scalar {
    fn from(k: u128) -> Self {
        Scalar(k.into())
    }
}

impl From<Scalar> for FieldBytes {
    fn from(scalar: Scalar) -> Self {
        scalar.to_bytes()
    }
}

impl From<&Scalar> for FieldBytes {
    fn from(scalar: &Scalar) -> Self {
        scalar.to_bytes()
    }
}

impl From<ScalarPrimitive<NistP256>> for Scalar {
    fn from(scalar: ScalarPrimitive<NistP256>) -> Scalar {
        Scalar(*scalar.as_uint())
    }
}

impl From<&ScalarPrimitive<NistP256>> for Scalar {
    fn from(scalar: &ScalarPrimitive<NistP256>) -> Scalar {
        Scalar(*scalar.as_uint())
    }
}

impl From<Scalar> for ScalarPrimitive<NistP256> {
    fn from(scalar: Scalar) -> ScalarPrimitive<NistP256> {
        ScalarPrimitive::from(&scalar)
    }
}

impl From<&Scalar> for ScalarPrimitive<NistP256> {
    fn from(scalar: &Scalar) -> ScalarPrimitive<NistP256> {
        ScalarPrimitive::new(scalar.0).unwrap()
    }
}

impl From<&SecretKey> for Scalar {
    fn from(secret_key: &SecretKey) -> Scalar {
        *secret_key.to_nonzero_scalar()
    }
}

impl From<Scalar> for U256 {
    fn from(scalar: Scalar) -> U256 {
        scalar.0
    }
}

impl From<&Scalar> for U256 {
    fn from(scalar: &Scalar) -> U256 {
        scalar.0
    }
}

#[cfg(feature = "bits")]
impl From<&Scalar> for ScalarBits {
    fn from(scalar: &Scalar) -> ScalarBits {
        scalar.0.to_words().into()
    }
}

impl Add<Scalar> for Scalar {
    type Output = Scalar;

    fn add(self, other: Scalar) -> Scalar {
        Scalar::add(&self, &other)
    }
}

impl Add<&Scalar> for &Scalar {
    type Output = Scalar;

    fn add(self, other: &Scalar) -> Scalar {
        Scalar::add(self, other)
    }
}

impl Add<&Scalar> for Scalar {
    type Output = Scalar;

    fn add(self, other: &Scalar) -> Scalar {
        Scalar::add(&self, other)
    }
}

impl AddAssign<Scalar> for Scalar {
    fn add_assign(&mut self, rhs: Scalar) {
        *self = Scalar::add(self, &rhs);
    }
}

impl AddAssign<&Scalar> for Scalar {
    fn add_assign(&mut self, rhs: &Scalar) {
        *self = Scalar::add(self, rhs);
    }
}

impl Sub<Scalar> for Scalar {
    type Output = Scalar;

    fn sub(self, other: Scalar) -> Scalar {
        Scalar::sub(&self, &other)
    }
}

impl Sub<&Scalar> for &Scalar {
    type Output = Scalar;

    fn sub(self, other: &Scalar) -> Scalar {
        Scalar::sub(self, other)
    }
}

impl Sub<&Scalar> for Scalar {
    type Output = Scalar;

    fn sub(self, other: &Scalar) -> Scalar {
        Scalar::sub(&self, other)
    }
}

impl SubAssign<Scalar> for Scalar {
    fn sub_assign(&mut self, rhs: Scalar) {
        *self = Scalar::sub(self, &rhs);
    }
}

impl SubAssign<&Scalar> for Scalar {
    fn sub_assign(&mut self, rhs: &Scalar) {
        *self = Scalar::sub(self, rhs);
    }
}

impl Mul<Scalar> for Scalar {
    type Output = Scalar;

    fn mul(self, other: Scalar) -> Scalar {
        Scalar::multiply(&self, &other)
    }
}

impl Mul<&Scalar> for &Scalar {
    type Output = Scalar;

    fn mul(self, other: &Scalar) -> Scalar {
        Scalar::multiply(self, other)
    }
}

impl Mul<&Scalar> for Scalar {
    type Output = Scalar;

    fn mul(self, other: &Scalar) -> Scalar {
        Scalar::multiply(&self, other)
    }
}

impl MulAssign<Scalar> for Scalar {
    fn mul_assign(&mut self, rhs: Scalar) {
        *self = Scalar::multiply(self, &rhs);
    }
}

impl MulAssign<&Scalar> for Scalar {
    fn mul_assign(&mut self, rhs: &Scalar) {
        *self = Scalar::multiply(self, rhs);
    }
}

impl Neg for Scalar {
    type Output = Scalar;

    fn neg(self) -> Scalar {
        Scalar::ZERO - self
    }
}

impl<'a> Neg for &'a Scalar {
    type Output = Scalar;

    fn neg(self) -> Scalar {
        Scalar::ZERO - self
    }
}

impl Reduce<U256> for Scalar {
    type Bytes = FieldBytes;

    fn reduce(w: U256) -> Self {
        let (r, underflow) = w.sbb(&NistP256::ORDER, Limb::ZERO);
        let underflow = Choice::from((underflow.0 >> (Limb::BITS - 1)) as u8);
        Self(U256::conditional_select(&w, &r, !underflow))
    }

    fn reduce_bytes(bytes: &FieldBytes) -> Self {
        Self::reduce(U256::from_be_byte_array(*bytes))
    }
}

impl ReduceNonZero<U256> for Scalar {
    fn reduce_nonzero(w: U256) -> Self {
        const ORDER_MINUS_ONE: U256 = NistP256::ORDER.wrapping_sub(&U256::ONE);
        let (r, underflow) = w.sbb(&ORDER_MINUS_ONE, Limb::ZERO);
        let underflow = Choice::from((underflow.0 >> (Limb::BITS - 1)) as u8);
        Self(U256::conditional_select(&w, &r, !underflow).wrapping_add(&U256::ONE))
    }

    fn reduce_nonzero_bytes(bytes: &FieldBytes) -> Self {
        Self::reduce_nonzero(U256::from_be_byte_array(*bytes))
    }
}

impl Sum for Scalar {
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
        iter.reduce(core::ops::Add::add).unwrap_or(Self::ZERO)
    }
}

impl<'a> Sum<&'a Scalar> for Scalar {
    fn sum<I: Iterator<Item = &'a Scalar>>(iter: I) -> Self {
        iter.copied().sum()
    }
}

impl Product for Scalar {
    fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
        iter.reduce(core::ops::Mul::mul).unwrap_or(Self::ONE)
    }
}

impl<'a> Product<&'a Scalar> for Scalar {
    fn product<I: Iterator<Item = &'a Scalar>>(iter: I) -> Self {
        iter.copied().product()
    }
}

impl ConditionallySelectable for Scalar {
    fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
        Self(U256::conditional_select(&a.0, &b.0, choice))
    }
}

impl ConstantTimeEq for Scalar {
    fn ct_eq(&self, other: &Self) -> Choice {
        self.0.ct_eq(&other.0)
    }
}

impl Debug for Scalar {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Scalar(0x{:X})", &self.0)
    }
}

#[cfg(feature = "serde")]
impl Serialize for Scalar {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: ser::Serializer,
    {
        ScalarPrimitive::from(self).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Scalar {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: de::Deserializer<'de>,
    {
        Ok(ScalarPrimitive::deserialize(deserializer)?.into())
    }
}

#[cfg(test)]
mod tests {
    use super::Scalar;
    use crate::{FieldBytes, SecretKey};
    use elliptic_curve::group::ff::{Field, PrimeField};
    use primeorder::{
        impl_field_identity_tests, impl_field_invert_tests, impl_field_sqrt_tests,
        impl_primefield_tests,
    };

    /// t = (modulus - 1) >> S
    const T: [u64; 4] = [
        0x4f3b9cac2fc63255,
        0xfbce6faada7179e8,
        0x0fffffffffffffff,
        0x0ffffffff0000000,
    ];

    impl_field_identity_tests!(Scalar);
    impl_field_invert_tests!(Scalar);
    impl_field_sqrt_tests!(Scalar);
    impl_primefield_tests!(Scalar, T);

    #[test]
    fn from_to_bytes_roundtrip() {
        let k: u64 = 42;
        let mut bytes = FieldBytes::default();
        bytes[24..].copy_from_slice(k.to_be_bytes().as_ref());

        let scalar = Scalar::from_repr(bytes).unwrap();
        assert_eq!(bytes, scalar.to_bytes());
    }

    /// Basic tests that multiplication works.
    #[test]
    fn multiply() {
        let one = Scalar::ONE;
        let two = one + &one;
        let three = two + &one;
        let six = three + &three;
        assert_eq!(six, two * &three);

        let minus_two = -two;
        let minus_three = -three;
        assert_eq!(two, -minus_two);

        assert_eq!(minus_three * &minus_two, minus_two * &minus_three);
        assert_eq!(six, minus_two * &minus_three);
    }

    /// Tests that a Scalar can be safely converted to a SecretKey and back
    #[test]
    fn from_ec_secret() {
        let scalar = Scalar::ONE;
        let secret = SecretKey::from_bytes(&scalar.to_bytes()).unwrap();
        let rederived_scalar = Scalar::from(&secret);
        assert_eq!(scalar.0, rederived_scalar.0);
    }

    #[test]
    #[cfg(all(feature = "bits", target_pointer_width = "32"))]
    fn scalar_into_scalarbits() {
        use crate::ScalarBits;

        let minus_one = ScalarBits::from([
            0xfc63_2550,
            0xf3b9_cac2,
            0xa717_9e84,
            0xbce6_faad,
            0xffff_ffff,
            0xffff_ffff,
            0x0000_0000,
            0xffff_ffff,
        ]);

        let scalar_bits = ScalarBits::from(&-Scalar::from(1u32));
        assert_eq!(minus_one, scalar_bits);
    }
}