binread/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! A Rust crate for helping parse binary data using ✨macro magic✨.
//!
//! # Example
//!
//! ```
//! # use binread::{prelude::*, io::Cursor, NullString};
//!
//! #[derive(BinRead)]
//! #[br(magic = b"DOG", assert(name.len() != 0))]
//! struct Dog {
//!     bone_pile_count: u8,
//!
//!     #[br(big, count = bone_pile_count)]
//!     bone_piles: Vec<u16>,
//!
//!     #[br(align_before = 0xA)]
//!     name: NullString
//! }
//!
//! let mut reader = Cursor::new(b"DOG\x02\x00\x01\x00\x12\0\0Rudy\0");
//! let dog: Dog = reader.read_ne().unwrap();
//! assert_eq!(dog.bone_piles, &[0x1, 0x12]);
//! assert_eq!(dog.name.into_string(), "Rudy")
//! ```
//!
//! # The Basics
//!
//! At the core of `binread` is the [`BinRead`](BinRead) trait. It defines how to read
//! a type from bytes and is already implemented for most primitives and simple collections.
//!
//! ```rust
//! use binread::{BinRead, io::Cursor};
//!
//! let mut reader = Cursor::new(b"\0\0\0\x01");
//! let val = u32::read(&mut reader).unwrap();
//! ```
//!
//! However, [`read`](BinRead::read) is intentionally simple and, as a result, doesn't even
//! allow you to configure the byte order. For that you need [`read_options`](BinRead::read_options)
//! which, while more powerful, isn't exactly ergonomics.
//!
//! So, as a balance between ergonomics and configurability you have the [`BinReaderExt`](BinReaderExt)
//! trait. It is an extension for readers to allow for you to directly read any BinRead types from
//! any reader.
//!
//! Example:
//! ```rust
//! use binread::{BinReaderExt, io::Cursor};
//!
//! let mut reader = Cursor::new(b"\x00\x0A");
//! let val: u16 = reader.read_be().unwrap();
//! assert_eq!(val, 10);
//! ```
//!
//! It even works for tuples and arrays of BinRead types for up to size 32.
//!
//! # Derive Macro
//!
//! The most significant feature of binread is its ability to use the Derive macro to
//! implement [`BinRead`](BinRead) for your own types. This allows you to replace repetitive
//! imperative code with declarative struct definitions for your binary data parsing.
//!
//! ## Basic Derive Example
//! ```rust
//! # use binread::BinRead;
//! #[derive(BinRead)]
//! struct MyType {
//!     first: u32,
//!     second: u32
//! }
//!
//! // Also works with tuple types!
//! #[derive(BinRead)]
//! struct MyType2(u32, u32);
//! ```
//! ## Attributes
//! The BinRead derive macro uses attributes in order to allow for more complicated parsers. For
//! example you can use `big` or `little` at either the struct-level or the field-level in order
//! to override the byte order of values.
//! ```rust
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead)]
//! #[br(little)]
//! struct MyType (
//!     #[br(big)] u32, // will be big endian
//!     u32, // will be little endian
//! );
//! ```
//! The order of precedence is: (from highest to lowest)
//! 1. Field-level
//! 2. Variant-level (for enums)
//! 3. Top-level
//! 4. Configured (i.e. what endianess was passed in)
//! 5. Native endianess
//!
//! For a list of attributes see the [`attribute`](attribute) module
//!
//! ## Generics
//! The BinRead derive macro also allows for generic parsing. That way you can build up
//! higher-level parsers that can have their type swapped out to allow greater reuse of code.
//!
//! ```rust
//! # use binread::{prelude::*, io::Cursor};
//! #[derive(BinRead)]
//! struct U32CountVec<T: BinRead<Args=()>> {
//!     count: u32,
//!     #[br(count = count)]
//!     data: Vec<T>,
//! }
//! ```
//!
//! In order to parse generically, we have to (in some way) bound `Args`. The easiest way to do
//! this is to bound `<T as BinRead>::Args` to `()` (no arguments), however it is also possible to
//! either accept a specific set of arguments or be generic over the given arguments.
//!
//! ## Features
//!
//! * `const_generics` - Change array [`BinRead`] implementation to use const generics
//! * `std` - Disable this feature to enable `no_std` support, on by default
#![cfg_attr(not(feature = "std"), no_std)]
#![warn(rust_2018_idioms)]

#[cfg(feature = "std")]
use std as alloc;

#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(not(feature = "std"))]
use alloc::{boxed::Box, string::String, vec::Vec};

#[doc(hidden)]
#[path = "private.rs"]
pub mod __private;

pub mod attribute;
pub mod endian;
pub mod error;
pub mod file_ptr;
pub mod helpers;
pub mod io;
#[doc(hidden)]
pub mod options;
#[doc(hidden)]
pub mod pos_value;
pub mod punctuated;
#[doc(hidden)]
pub mod strings;

#[cfg(feature = "std")]
#[cfg(feature = "debug_template")]
pub mod binary_template;

use core::any::{Any, TypeId};

#[doc(inline)]
pub use {
    endian::Endian,
    error::Error,
    file_ptr::{FilePtr, FilePtr128, FilePtr16, FilePtr32, FilePtr64, FilePtr8},
    helpers::{count, until, until_eof, until_exclusive},
    options::ReadOptions,
    pos_value::PosValue,
    strings::{NullString, NullWideString},
};

use io::{Read, Seek, SeekFrom, StreamPosition};

/// Derive macro for BinRead. [Usage here](BinRead).
pub use binread_derive::BinRead;

/// Equivalent to `derive(BinRead)` but allows for temporary variables.
pub use binread_derive::derive_binread;

mod binread_impls;
pub use binread_impls::*;

/// A Result for any binread function that can return an error
pub type BinResult<T> = core::result::Result<T, Error>;

/// A `BinRead` trait allows reading a structure from anything that implements [`io::Read`](io::Read) and [`io::Seek`](io::Seek)
/// BinRead is implemented on the type to be read out of the given reader
pub trait BinRead: Sized {
    /// The type of arguments needed to be supplied in order to read this type, usually a tuple.
    ///
    /// **NOTE:** For types that don't require any arguments, use the unit (`()`) type. This will allow [`read`](BinRead::read) to be used.
    type Args: Any + Copy;

    /// Read the type from the reader while assuming no arguments have been passed
    ///
    /// # Panics
    /// Panics if there is no [`args_default`](BinRead::args_default) implementation
    fn read<R: Read + Seek>(reader: &mut R) -> BinResult<Self> {
        let args = match Self::args_default() {
            Some(args) => args,
            None => panic!("Must pass args, no args_default implemented"),
        };

        Self::read_options(reader, &ReadOptions::default(), args)
    }

    /// Read the type from the reader using the specified arguments
    fn read_args<R: Read + Seek>(reader: &mut R, args: Self::Args) -> BinResult<Self> {
        Self::read_options(reader, &ReadOptions::default(), args)
    }

    /// Read the type from the reader
    fn read_options<R: Read + Seek>(
        reader: &mut R,
        options: &ReadOptions,
        args: Self::Args,
    ) -> BinResult<Self>;

    fn after_parse<R: Read + Seek>(
        &mut self,
        _: &mut R,
        _: &ReadOptions,
        _: Self::Args,
    ) -> BinResult<()> {
        Ok(())
    }

    /// The default arguments to be used when using the [`read`](BinRead::read) shortcut method.
    /// Override this for any type that optionally requries arguments
    fn args_default() -> Option<Self::Args> {
        // Trick to effectively get specialization on stable, should constant-folded away
        // Returns `Some(())` if Self::Args == (), otherwise returns `None`
        if TypeId::of::<Self::Args>() == TypeId::of::<()>() {
            Some(unsafe { core::mem::MaybeUninit::uninit().assume_init() })
        } else {
            None
        }
    }
}

/// An extension trait for [`io::Read`](io::Read) to provide methods for reading a value directly
///
/// ## Example
/// ```rust
/// use binread::prelude::*; // BinReadExt is in the prelude
/// use binread::endian::LE;
/// use binread::io::Cursor;
///
/// let mut reader = Cursor::new(b"\x07\0\0\0\xCC\0\0\x05");
/// let x: u32 = reader.read_le().unwrap();
/// let y: u16 = reader.read_type(LE).unwrap();
/// let z = reader.read_be::<u16>().unwrap();
///
/// assert_eq!((x, y, z), (7u32, 0xCCu16, 5u16));
/// ```
pub trait BinReaderExt: Read + Seek + Sized {
    /// Read the given type from the reader using the given endianness.
    fn read_type<T: BinRead>(&mut self, endian: Endian) -> BinResult<T> {
        let args = match T::args_default() {
            Some(args) => args,
            None => panic!("Must pass args, no args_default implemented"),
        };

        let options = ReadOptions {
            endian,
            ..Default::default()
        };

        let mut res = T::read_options(self, &options, args)?;
        res.after_parse(self, &options, args)?;

        Ok(res)
    }

    /// Read the given type from the reader with big endian byteorder
    fn read_be<T: BinRead>(&mut self) -> BinResult<T> {
        self.read_type(Endian::Big)
    }

    /// Read the given type from the reader with little endian byteorder
    fn read_le<T: BinRead>(&mut self) -> BinResult<T> {
        self.read_type(Endian::Little)
    }

    /// Read the given type from the reader with the native byteorder
    fn read_ne<T: BinRead>(&mut self) -> BinResult<T> {
        self.read_type(Endian::Native)
    }

    /// Read `T` from the reader with the given byte order and arguments.
    fn read_type_args<T: BinRead>(&mut self, endian: Endian, args: T::Args) -> BinResult<T> {
        let options = ReadOptions {
            endian,
            ..Default::default()
        };

        let mut res = T::read_options(self, &options, args.clone())?;
        res.after_parse(self, &options, args)?;

        Ok(res)
    }

    /// Read `T` from the reader, assuming big-endian byte order, using the
    /// given arguments.
    fn read_be_args<T: BinRead>(&mut self, args: T::Args) -> BinResult<T> {
        self.read_type_args(Endian::Big, args)
    }

    /// Read `T` from the reader, assuming little-endian byte order, using the
    /// given arguments.
    fn read_le_args<T: BinRead>(&mut self, args: T::Args) -> BinResult<T> {
        self.read_type_args(Endian::Little, args)
    }

    /// Read `T` from the reader, assuming native-endian byte order, using the
    /// given arguments.
    fn read_ne_args<T: BinRead>(&mut self, args: T::Args) -> BinResult<T> {
        self.read_type_args(Endian::Native, args)
    }
}

impl<R: Read + Seek + Sized> BinReaderExt for R {}

/// The collection of traits and types you'll likely need when working with binread and are
/// unlikely to cause name conflicts.
pub mod prelude {
    pub use crate::BinRead;
    pub use crate::BinReaderExt;
    pub use crate::BinResult;
}