rs_merkle/
merkle_tree.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
use crate::prelude::*;
use crate::{partial_tree::PartialTree, utils, utils::indices, Hasher, MerkleProof};

/// [`MerkleTree`] is a Merkle Tree that is well suited for both basic and advanced usage.
///
/// Basic features include the creation and verification of Merkle proofs from a set of leaves.
/// This is often done in various cryptocurrencies.
///
/// Advanced features include being able to make transactional changes to a tree with being able to
/// roll back to any previously committed state of the tree. This scenario is similar to Git and
/// can be found in databases and file systems.
#[derive(Clone)]
pub struct MerkleTree<T: Hasher> {
    current_working_tree: PartialTree<T>,
    history: Vec<PartialTree<T>>,
    uncommitted_leaves: Vec<T::Hash>,
}

impl<T: Hasher> Default for MerkleTree<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: Hasher> MerkleTree<T> {
    /// Creates a new instance of Merkle Tree. Requires a hash algorithm to be specified.
    ///
    /// # Examples
    ///
    /// ```
    /// use rs_merkle::{MerkleTree, algorithms::Sha256};
    ///
    /// let merkle_tree: MerkleTree<Sha256> = MerkleTree::new();
    ///
    /// let another_merkle_tree = MerkleTree::<Sha256>::new();
    /// ```
    pub fn new() -> Self {
        Self {
            current_working_tree: PartialTree::new(),
            history: Vec::new(),
            uncommitted_leaves: Vec::new(),
        }
    }

    /// Clones the leaves and builds the tree from them
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let leaves = [
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    ///     Sha256::hash("c".as_bytes()),
    /// ];
    ///
    /// let merkle_tree = MerkleTree::<Sha256>::from_leaves(&leaves);
    /// # Ok(())
    /// # }
    pub fn from_leaves(leaves: &[T::Hash]) -> Self {
        let mut tree = Self::new();
        tree.append(leaves.to_vec().as_mut());
        tree.commit();
        tree
    }

    /// Returns the tree root - the top hash of the tree. Used in the inclusion proof verification.
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let leaves = [
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    ///     Sha256::hash("c".as_bytes()),
    /// ];
    ///
    /// let merkle_tree = MerkleTree::<Sha256>::from_leaves(&leaves);
    ///
    /// let indices_to_prove = vec![0, 1];
    /// let leaves_to_prove = leaves.get(0..2).ok_or("can't get leaves to prove")?;
    ///
    /// let proof = merkle_tree.proof(&indices_to_prove);
    /// let root = merkle_tree.root().ok_or("couldn't get the merkle root")?;
    ///
    /// assert!(proof.verify(root, &indices_to_prove, leaves_to_prove, leaves.len()));
    /// # Ok(())
    /// # }
    /// ```
    pub fn root(&self) -> Option<T::Hash> {
        Some(self.layer_tuples().last()?.first()?.1)
    }

    /// Similar to [`MerkleTree::root`], but returns a hex encoded string instead of
    /// [`Hasher::Hash`].
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let leaves = [
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    ///     Sha256::hash("c".as_bytes()),
    /// ];
    ///
    /// let merkle_tree = MerkleTree::<Sha256>::from_leaves(&leaves);
    /// let root = merkle_tree.root_hex().ok_or("couldn't get the merkle root")?;
    ///
    /// assert_eq!(
    ///     root,
    ///     "7075152d03a5cd92104887b476862778ec0c87be5c2fa1c0a90f87c49fad6eff".to_string()
    /// );
    /// # Ok(())
    /// # }
    /// ```
    pub fn root_hex(&self) -> Option<String> {
        let root = self.root()?;
        Some(utils::collections::to_hex_string(&root))
    }

    /// Returns helper nodes required to build a partial tree for the given indices
    /// to be able to extract a root from it. Useful in constructing Merkle proofs
    fn helper_nodes(&self, leaf_indices: &[usize]) -> Vec<T::Hash> {
        let mut helper_nodes = Vec::<T::Hash>::new();

        for layer in self.helper_node_tuples(leaf_indices) {
            for (_index, hash) in layer {
                helper_nodes.push(hash)
            }
        }

        helper_nodes
    }

    /// Gets all helper nodes required to build a partial merkle tree for the given indices,
    /// cloning all required hashes into the resulting vector.
    fn helper_node_tuples(&self, leaf_indices: &[usize]) -> Vec<Vec<(usize, T::Hash)>> {
        let mut current_layer_indices = leaf_indices.to_vec();
        let mut helper_nodes: Vec<Vec<(usize, T::Hash)>> = Vec::new();

        for tree_layer in self.layer_tuples() {
            let mut helpers_layer = Vec::new();
            let siblings = utils::indices::sibling_indices(&current_layer_indices);
            // Filter all nodes that do not require an additional hash to be calculated
            let helper_indices = utils::collections::difference(&siblings, &current_layer_indices);

            for index in helper_indices {
                if let Some(tuple) = tree_layer.get(index) {
                    helpers_layer.push(*tuple);
                }
            }

            helper_nodes.push(helpers_layer);
            current_layer_indices = indices::parent_indices(&current_layer_indices);
        }

        helper_nodes
    }

    /// Returns the Merkle proof required to prove the inclusion of items in a data set.
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let leaves: Vec<[u8; 32]> = ["a", "b", "c", "d", "e", "f"]
    ///     .iter()
    ///     .map(|x| Sha256::hash(x.as_bytes()))
    ///     .collect();
    ///
    /// let merkle_tree = MerkleTree::<Sha256>::from_leaves(&leaves);
    /// let indices_to_prove = vec![3, 4];
    /// let leaves_to_prove = leaves.get(3..5).ok_or("can't get leaves to prove")?;
    /// let merkle_proof = merkle_tree.proof(&indices_to_prove);
    /// let merkle_root = merkle_tree.root().ok_or("couldn't get the merkle root")?;
    /// // Serialize proof to pass it to the client
    /// let proof_bytes = merkle_proof.to_bytes();
    ///
    /// // Parse proof back on the client
    /// let proof = MerkleProof::<Sha256>::try_from(proof_bytes)?;
    ///
    /// assert!(proof.verify(merkle_root, &indices_to_prove, leaves_to_prove, leaves.len()));
    /// # Ok(())
    /// # }
    /// ```
    pub fn proof(&self, leaf_indices: &[usize]) -> MerkleProof<T> {
        MerkleProof::<T>::new(self.helper_nodes(leaf_indices))
    }

    /// Inserts a new leaf. Please note it won't modify the root just yet; For the changes
    /// to be applied to the root, [`MerkleTree::commit`] method should be called first. To get the
    /// root of the new tree without applying the changes, you can use
    /// [`MerkleTree::uncommitted_root`]
    ///
    /// # Examples
    ///
    /// Get the root after an insert:
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut merkle_tree = MerkleTree::<Sha256>::new();
    /// merkle_tree.insert(Sha256::hash("a".as_bytes()));
    ///
    /// assert_eq!(merkle_tree.root(), None);
    ///
    /// merkle_tree.commit();
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     Some("ca978112ca1bbdcafac231b39a23dc4da786eff8147c4e72b9807785afee48bb".to_string())
    /// );
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// Inserts also can be chained with [`MerkleTree::commit`] for convenience:
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut merkle_tree = MerkleTree::<Sha256>::new();
    /// merkle_tree
    ///     .insert(Sha256::hash("a".as_bytes()))
    ///     .commit();
    ///
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     Some("ca978112ca1bbdcafac231b39a23dc4da786eff8147c4e72b9807785afee48bb".to_string())
    /// );
    /// # Ok(())
    /// # }
    /// ```
    pub fn insert(&mut self, leaf: T::Hash) -> &mut Self {
        self.uncommitted_leaves.push(leaf);
        self
    }

    /// Appends leaves to the tree. Behaves similarly to [`MerkleTree::insert`], but for a list of
    /// items. Takes ownership of the elements of the [`std::vec::Vec<T>`],
    /// similarly to [`std::vec::Vec::append`].
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut merkle_tree = MerkleTree::<Sha256>::new();
    /// let mut leaves = vec![
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    /// ];
    /// merkle_tree
    ///     .append(&mut leaves)
    ///     .commit();
    ///
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     Some("e5a01fee14e0ed5c48714f22180f25ad8365b53f9779f79dc4a3d7e93963f94a".to_string())
    /// );
    /// # Ok(())
    /// # }
    /// ```
    pub fn append(&mut self, leaves: &mut Vec<T::Hash>) -> &mut Self {
        self.uncommitted_leaves.append(leaves);
        self
    }

    /// Commits the changes made by [`MerkleTree::insert`] and [`MerkleTree::append`]
    /// and modifies the root.
    /// Commits are saved to the history, so the tree can be rolled back to any previous commit
    /// using [`MerkleTree::rollback`]
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut merkle_tree = MerkleTree::<Sha256>::new();
    /// let mut leaves = vec![
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    /// ];
    /// merkle_tree.append(&mut leaves);
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     None
    /// );
    ///
    /// merkle_tree.commit();
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     Some("e5a01fee14e0ed5c48714f22180f25ad8365b53f9779f79dc4a3d7e93963f94a".to_string())
    /// );
    /// # Ok(())
    /// # }
    /// ```
    pub fn commit(&mut self) {
        if let Some(diff) = self.uncommitted_diff() {
            self.history.push(diff.clone());
            self.current_working_tree.merge_unverified(diff);
            self.uncommitted_leaves.clear();
        }
    }

    /// Rolls back one commit and reverts the tree to the previous state.
    /// Removes the most recent commit from the history.
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut merkle_tree = MerkleTree::<Sha256>::new();
    ///
    /// merkle_tree.insert(Sha256::hash("a".as_bytes())).commit();
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     Some("ca978112ca1bbdcafac231b39a23dc4da786eff8147c4e72b9807785afee48bb".to_string())
    /// );
    ///
    /// merkle_tree.insert(Sha256::hash("b".as_bytes())).commit();
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     Some("e5a01fee14e0ed5c48714f22180f25ad8365b53f9779f79dc4a3d7e93963f94a".to_string())
    /// );
    ///
    /// // Rollback to the previous state
    /// merkle_tree.rollback();
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     Some("ca978112ca1bbdcafac231b39a23dc4da786eff8147c4e72b9807785afee48bb".to_string())
    /// );
    /// # Ok(())
    /// # }
    /// ```
    pub fn rollback(&mut self) {
        // Remove the most recent commit
        self.history.pop();
        // Clear working tree
        self.current_working_tree.clear();
        // Applying all the commits up to the removed one. This is not an
        // efficient way of doing things, but the diff subtraction is not implemented yet on
        // PartialMerkleTree
        for commit in &self.history {
            self.current_working_tree.merge_unverified(commit.clone());
        }
    }

    /// Calculates the root of the uncommitted changes as if they were committed.
    /// Will return the same hash as [`MerkleTree::root`] after [`MerkleTree::commit`]
    ///
    /// For examples, please check [`MerkleTree::uncommitted_root_hex`]
    pub fn uncommitted_root(&self) -> Option<T::Hash> {
        let shadow_tree = self.uncommitted_diff()?;
        shadow_tree.root().cloned()
    }

    /// Calculates the root of the uncommitted changes as if they were committed. Serializes
    /// the result as a hex string.
    /// Will return the same hash as [`MerkleTree::root_hex`] after [`MerkleTree::commit`]
    ///
    /// ### Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut merkle_tree = MerkleTree::<Sha256>::new();
    /// let mut leaves = vec![
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    /// ];
    /// merkle_tree.append(&mut leaves);
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     None
    /// );
    /// assert_eq!(
    ///      merkle_tree.uncommitted_root_hex(),
    ///      Some("e5a01fee14e0ed5c48714f22180f25ad8365b53f9779f79dc4a3d7e93963f94a".to_string())
    /// );
    ///
    /// merkle_tree.commit();
    /// assert_eq!(
    ///     merkle_tree.root_hex(),
    ///     Some("e5a01fee14e0ed5c48714f22180f25ad8365b53f9779f79dc4a3d7e93963f94a".to_string())
    /// );
    /// # Ok(())
    /// # }
    /// ```
    pub fn uncommitted_root_hex(&self) -> Option<String> {
        let root = self.uncommitted_root()?;
        Some(utils::collections::to_hex_string(&root))
    }

    /// Clears all uncommitted changes made by [`MerkleTree::insert`] and [`MerkleTree::append`]
    /// operations without applying them to the tree.
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let mut merkle_tree = MerkleTree::<Sha256>::new();
    /// let mut leaves = vec![
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    /// ];
    /// assert_eq!(
    ///     merkle_tree.root(),
    ///     None
    /// );
    ///
    /// merkle_tree.append(&mut leaves);
    /// merkle_tree.abort_uncommitted();
    /// merkle_tree.commit();
    ///
    /// assert_eq!(
    ///     merkle_tree.root(),
    ///     None
    /// );
    /// # Ok(())
    /// # }
    /// ```
    pub fn abort_uncommitted(&mut self) {
        self.uncommitted_leaves.clear()
    }

    /// Returns the tree depth. A tree depth is how many layers there is between the
    /// leaves and the root
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let leaves = [
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    ///     Sha256::hash("c".as_bytes()),
    /// ];
    ///
    /// let merkle_tree = MerkleTree::<Sha256>::from_leaves(&leaves);
    /// assert_eq!(merkle_tree.depth(), 2);
    /// # Ok(())
    /// # }
    /// ```
    pub fn depth(&self) -> usize {
        self.layer_tuples().len() - 1
    }

    /// Returns a copy of the tree leaves - the base level of the tree.
    ///
    /// ### Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let leaves = [
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    ///     Sha256::hash("c".as_bytes()),
    /// ];
    ///
    /// let merkle_tree = MerkleTree::<Sha256>::from_leaves(&leaves);
    /// assert_eq!(merkle_tree.leaves(), Some(leaves.to_vec()));
    /// # Ok(())
    /// # }
    /// ```
    pub fn leaves(&self) -> Option<Vec<T::Hash>> {
        Some(self.layers().first()?.to_vec())
    }

    /// Returns the number of leaves in the tree.
    ///
    /// ## Examples
    ///
    /// ```
    /// # use rs_merkle::{MerkleTree, MerkleProof, algorithms::Sha256, Hasher, Error, utils};
    /// # use std::convert::TryFrom;
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let leaves = [
    ///     Sha256::hash("a".as_bytes()),
    ///     Sha256::hash("b".as_bytes()),
    ///     Sha256::hash("c".as_bytes()),
    /// ];
    ///
    /// let merkle_tree = MerkleTree::<Sha256>::from_leaves(&leaves);
    /// assert_eq!(merkle_tree.leaves_len(), 3);
    /// # Ok(())
    /// # }
    /// ```
    pub fn leaves_len(&self) -> usize {
        if let Some(leaves) = self.leaves_tuples() {
            return leaves.len();
        }

        0
    }

    fn leaves_tuples(&self) -> Option<&[(usize, T::Hash)]> {
        Some(self.layer_tuples().first()?.as_slice())
    }

    /// Returns the whole tree, where the first layer is leaves and
    /// consequent layers are nodes.
    fn layers(&self) -> Vec<Vec<T::Hash>> {
        self.current_working_tree.layer_nodes()
    }

    fn layer_tuples(&self) -> &[Vec<(usize, T::Hash)>] {
        self.current_working_tree.layers()
    }

    /// Creates a diff from a changes that weren't committed to the main tree yet. Can be used
    /// to get uncommitted root or can be merged with the main tree
    fn uncommitted_diff(&self) -> Option<PartialTree<T>> {
        if self.uncommitted_leaves.is_empty() {
            return None;
        }

        let committed_leaves_count = self.leaves_len();

        let shadow_indices: Vec<usize> = self
            .uncommitted_leaves
            .iter()
            .enumerate()
            .map(|(index, _)| committed_leaves_count + index)
            .collect();
        // Tuples (index, hash) needed to construct a partial tree, since partial tree can't
        // maintain indices otherwise
        let mut shadow_node_tuples: Vec<(usize, T::Hash)> = shadow_indices
            .iter()
            .cloned()
            .zip(self.uncommitted_leaves.iter().cloned())
            .collect();
        let mut partial_tree_tuples = self.helper_node_tuples(&shadow_indices);

        // Figuring what tree height would be if we've committed the changes
        let leaves_in_new_tree = self.leaves_len() + self.uncommitted_leaves.len();
        let uncommitted_tree_depth = utils::indices::tree_depth(leaves_in_new_tree);

        match partial_tree_tuples.first_mut() {
            Some(first_layer) => {
                first_layer.append(&mut shadow_node_tuples);
                first_layer.sort_by(|(a, _), (b, _)| a.cmp(b));
            }
            None => partial_tree_tuples.push(shadow_node_tuples),
        }

        // Building a partial tree with the changes that would be needed to the working tree
        PartialTree::<T>::build(partial_tree_tuples, uncommitted_tree_depth).ok()
    }
}