arrayvec/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
//! **arrayvec** provides the types `ArrayVec` and `ArrayString`: 
//! array-backed vector and string types, which store their contents inline.
//!
//! The arrayvec package has the following cargo features:
//!
//! - `std`
//!   - Optional, enabled by default
//!   - Use libstd; disable to use `no_std` instead.
//!
//! - `serde`
//!   - Optional
//!   - Enable serialization for ArrayVec and ArrayString using serde 1.x
//! - `array-sizes-33-128`, `array-sizes-129-255`
//!   - Optional
//!   - Enable more array sizes (see [Array] for more information)
//!
//! - `unstable-const-fn`
//!   - Optional
//!   - Makes [`ArrayVec::new`] and [`ArrayString::new`] `const fn`s,
//!     using the nightly `const_fn` feature.
//!   - Unstable and requires nightly.
//!
//! ## Rust Version
//!
//! This version of arrayvec requires Rust 1.36 or later.
//!
#![doc(html_root_url="https://docs.rs/arrayvec/0.4/")]
#![cfg_attr(not(feature="std"), no_std)]
#![cfg_attr(feature="unstable-const-fn", feature(const_fn))]

#[cfg(feature="serde")]
extern crate serde;

#[cfg(not(feature="std"))]
extern crate core as std;

use std::cmp;
use std::iter;
use std::mem;
use std::ops::{Bound, Deref, DerefMut, RangeBounds};
use std::ptr;
use std::slice;

// extra traits
use std::borrow::{Borrow, BorrowMut};
use std::hash::{Hash, Hasher};
use std::fmt;

#[cfg(feature="std")]
use std::io;


mod maybe_uninit;
use crate::maybe_uninit::MaybeUninit;

#[cfg(feature="serde")]
use serde::{Serialize, Deserialize, Serializer, Deserializer};

mod array;
mod array_string;
mod char;
mod errors;

pub use crate::array::Array;
use crate::array::Index;
pub use crate::array_string::ArrayString;
pub use crate::errors::CapacityError;


/// A vector with a fixed capacity.
///
/// The `ArrayVec` is a vector backed by a fixed size array. It keeps track of
/// the number of initialized elements.
///
/// The vector is a contiguous value that you can store directly on the stack
/// if needed.
///
/// It offers a simple API but also dereferences to a slice, so
/// that the full slice API is available.
///
/// ArrayVec can be converted into a by value iterator.
pub struct ArrayVec<A: Array> {
    xs: MaybeUninit<A>,
    len: A::Index,
}

impl<A: Array> Drop for ArrayVec<A> {
    fn drop(&mut self) {
        self.clear();

        // MaybeUninit inhibits array's drop
    }
}

macro_rules! panic_oob {
    ($method_name:expr, $index:expr, $len:expr) => {
        panic!(concat!("ArrayVec::", $method_name, ": index {} is out of bounds in vector of length {}"),
               $index, $len)
    }
}

impl<A: Array> ArrayVec<A> {
    /// Create a new empty `ArrayVec`.
    ///
    /// Capacity is inferred from the type parameter.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 16]>::new();
    /// array.push(1);
    /// array.push(2);
    /// assert_eq!(&array[..], &[1, 2]);
    /// assert_eq!(array.capacity(), 16);
    /// ```
    #[cfg(not(feature="unstable-const-fn"))]
    pub fn new() -> ArrayVec<A> {
        unsafe {
            ArrayVec { xs: MaybeUninit::uninitialized(), len: Index::ZERO }
        }
    }

    #[cfg(feature="unstable-const-fn")]
    pub const fn new() -> ArrayVec<A> {
        unsafe {
            ArrayVec { xs: MaybeUninit::uninitialized(), len: Index::ZERO }
        }
    }

    /// Return the number of elements in the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    /// array.pop();
    /// assert_eq!(array.len(), 2);
    /// ```
    #[inline]
    pub fn len(&self) -> usize { self.len.to_usize() }

    /// Returns whether the `ArrayVec` is empty.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1]);
    /// array.pop();
    /// assert_eq!(array.is_empty(), true);
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool { self.len() == 0 }

    /// Return the capacity of the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let array = ArrayVec::from([1, 2, 3]);
    /// assert_eq!(array.capacity(), 3);
    /// ```
    #[inline(always)]
    pub fn capacity(&self) -> usize { A::CAPACITY }

    /// Return if the `ArrayVec` is completely filled.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 1]>::new();
    /// assert!(!array.is_full());
    /// array.push(1);
    /// assert!(array.is_full());
    /// ```
    pub fn is_full(&self) -> bool { self.len() == self.capacity() }

    /// Returns the capacity left in the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    /// array.pop();
    /// assert_eq!(array.remaining_capacity(), 1);
    /// ```
    pub fn remaining_capacity(&self) -> usize {
        self.capacity() - self.len()
    }

    /// Push `element` to the end of the vector.
    ///
    /// ***Panics*** if the vector is already full.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// array.push(1);
    /// array.push(2);
    ///
    /// assert_eq!(&array[..], &[1, 2]);
    /// ```
    pub fn push(&mut self, element: A::Item) {
        self.try_push(element).unwrap()
    }

    /// Push `element` to the end of the vector.
    ///
    /// Return `Ok` if the push succeeds, or return an error if the vector
    /// is already full.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// let push1 = array.try_push(1);
    /// let push2 = array.try_push(2);
    ///
    /// assert!(push1.is_ok());
    /// assert!(push2.is_ok());
    ///
    /// assert_eq!(&array[..], &[1, 2]);
    ///
    /// let overflow = array.try_push(3);
    ///
    /// assert!(overflow.is_err());
    /// ```
    pub fn try_push(&mut self, element: A::Item) -> Result<(), CapacityError<A::Item>> {
        if self.len() < A::CAPACITY {
            unsafe {
                self.push_unchecked(element);
            }
            Ok(())
        } else {
            Err(CapacityError::new(element))
        }
    }


    /// Push `element` to the end of the vector without checking the capacity.
    ///
    /// It is up to the caller to ensure the capacity of the vector is
    /// sufficiently large.
    ///
    /// This method uses *debug assertions* to check that the arrayvec is not full.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// if array.len() + 2 <= array.capacity() {
    ///     unsafe {
    ///         array.push_unchecked(1);
    ///         array.push_unchecked(2);
    ///     }
    /// }
    ///
    /// assert_eq!(&array[..], &[1, 2]);
    /// ```
    pub unsafe fn push_unchecked(&mut self, element: A::Item) {
        let len = self.len();
        debug_assert!(len < A::CAPACITY);
        ptr::write(self.get_unchecked_ptr(len), element);
        self.set_len(len + 1);
    }

    /// Get pointer to where element at `index` would be
    unsafe fn get_unchecked_ptr(&mut self, index: usize) -> *mut A::Item {
        self.xs.ptr_mut().add(index)
    }

    /// Insert `element` at position `index`.
    ///
    /// Shift up all elements after `index`.
    ///
    /// It is an error if the index is greater than the length or if the
    /// arrayvec is full.
    ///
    /// ***Panics*** if the array is full or the `index` is out of bounds. See
    /// `try_insert` for fallible version.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// array.insert(0, "x");
    /// array.insert(0, "y");
    /// assert_eq!(&array[..], &["y", "x"]);
    ///
    /// ```
    pub fn insert(&mut self, index: usize, element: A::Item) {
        self.try_insert(index, element).unwrap()
    }

    /// Insert `element` at position `index`.
    ///
    /// Shift up all elements after `index`; the `index` must be less than
    /// or equal to the length.
    ///
    /// Returns an error if vector is already at full capacity.
    ///
    /// ***Panics*** `index` is out of bounds.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// assert!(array.try_insert(0, "x").is_ok());
    /// assert!(array.try_insert(0, "y").is_ok());
    /// assert!(array.try_insert(0, "z").is_err());
    /// assert_eq!(&array[..], &["y", "x"]);
    ///
    /// ```
    pub fn try_insert(&mut self, index: usize, element: A::Item) -> Result<(), CapacityError<A::Item>> {
        if index > self.len() {
            panic_oob!("try_insert", index, self.len())
        }
        if self.len() == self.capacity() {
            return Err(CapacityError::new(element));
        }
        let len = self.len();

        // follows is just like Vec<T>
        unsafe { // infallible
            // The spot to put the new value
            {
                let p: *mut _ = self.get_unchecked_ptr(index);
                // Shift everything over to make space. (Duplicating the
                // `index`th element into two consecutive places.)
                ptr::copy(p, p.offset(1), len - index);
                // Write it in, overwriting the first copy of the `index`th
                // element.
                ptr::write(p, element);
            }
            self.set_len(len + 1);
        }
        Ok(())
    }

    /// Remove the last element in the vector and return it.
    ///
    /// Return `Some(` *element* `)` if the vector is non-empty, else `None`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// array.push(1);
    ///
    /// assert_eq!(array.pop(), Some(1));
    /// assert_eq!(array.pop(), None);
    /// ```
    pub fn pop(&mut self) -> Option<A::Item> {
        if self.len() == 0 {
            return None;
        }
        unsafe {
            let new_len = self.len() - 1;
            self.set_len(new_len);
            Some(ptr::read(self.get_unchecked_ptr(new_len)))
        }
    }

    /// Remove the element at `index` and swap the last element into its place.
    ///
    /// This operation is O(1).
    ///
    /// Return the *element* if the index is in bounds, else panic.
    ///
    /// ***Panics*** if the `index` is out of bounds.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// assert_eq!(array.swap_remove(0), 1);
    /// assert_eq!(&array[..], &[3, 2]);
    ///
    /// assert_eq!(array.swap_remove(1), 2);
    /// assert_eq!(&array[..], &[3]);
    /// ```
    pub fn swap_remove(&mut self, index: usize) -> A::Item {
        self.swap_pop(index)
            .unwrap_or_else(|| {
                panic_oob!("swap_remove", index, self.len())
            })
    }

    /// Remove the element at `index` and swap the last element into its place.
    ///
    /// This is a checked version of `.swap_remove`.  
    /// This operation is O(1).
    ///
    /// Return `Some(` *element* `)` if the index is in bounds, else `None`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// assert_eq!(array.swap_pop(0), Some(1));
    /// assert_eq!(&array[..], &[3, 2]);
    ///
    /// assert_eq!(array.swap_pop(10), None);
    /// ```
    pub fn swap_pop(&mut self, index: usize) -> Option<A::Item> {
        let len = self.len();
        if index >= len {
            return None;
        }
        self.swap(index, len - 1);
        self.pop()
    }

    /// Remove the element at `index` and shift down the following elements.
    ///
    /// The `index` must be strictly less than the length of the vector.
    ///
    /// ***Panics*** if the `index` is out of bounds.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// let removed_elt = array.remove(0);
    /// assert_eq!(removed_elt, 1);
    /// assert_eq!(&array[..], &[2, 3]);
    /// ```
    pub fn remove(&mut self, index: usize) -> A::Item {
        self.pop_at(index)
            .unwrap_or_else(|| {
                panic_oob!("remove", index, self.len())
            })
    }

    /// Remove the element at `index` and shift down the following elements.
    ///
    /// This is a checked version of `.remove(index)`. Returns `None` if there
    /// is no element at `index`. Otherwise, return the element inside `Some`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// assert!(array.pop_at(0).is_some());
    /// assert_eq!(&array[..], &[2, 3]);
    ///
    /// assert!(array.pop_at(2).is_none());
    /// assert!(array.pop_at(10).is_none());
    /// ```
    pub fn pop_at(&mut self, index: usize) -> Option<A::Item> {
        if index >= self.len() {
            None
        } else {
            self.drain(index..index + 1).next()
        }
    }

    /// Shortens the vector, keeping the first `len` elements and dropping
    /// the rest.
    ///
    /// If `len` is greater than the vector’s current length this has no
    /// effect.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3, 4, 5]);
    /// array.truncate(3);
    /// assert_eq!(&array[..], &[1, 2, 3]);
    /// array.truncate(4);
    /// assert_eq!(&array[..], &[1, 2, 3]);
    /// ```
    pub fn truncate(&mut self, new_len: usize) {
        unsafe {
            if new_len < self.len() {
                let tail: *mut [_] = &mut self[new_len..];
                self.len = Index::from(new_len);
                ptr::drop_in_place(tail);
            }
        }
    }

    /// Remove all elements in the vector.
    pub fn clear(&mut self) {
        self.truncate(0)
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(&mut e)` returns false.
    /// This method operates in place and preserves the order of the retained
    /// elements.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3, 4]);
    /// array.retain(|x| *x & 1 != 0 );
    /// assert_eq!(&array[..], &[1, 3]);
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
        where F: FnMut(&mut A::Item) -> bool
    {
        let len = self.len();
        let mut del = 0;
        {
            let v = &mut **self;

            for i in 0..len {
                if !f(&mut v[i]) {
                    del += 1;
                } else if del > 0 {
                    v.swap(i - del, i);
                }
            }
        }
        if del > 0 {
            self.drain(len - del..);
        }
    }

    /// Set the vector’s length without dropping or moving out elements
    ///
    /// This method is `unsafe` because it changes the notion of the
    /// number of “valid” elements in the vector. Use with care.
    ///
    /// This method uses *debug assertions* to check that `length` is
    /// not greater than the capacity.
    pub unsafe fn set_len(&mut self, length: usize) {
        debug_assert!(length <= self.capacity());
        self.len = Index::from(length);
    }

    /// Copy and appends all elements in a slice to the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut vec: ArrayVec<[usize; 10]> = ArrayVec::new();
    /// vec.push(1);
    /// vec.try_extend_from_slice(&[2, 3]).unwrap();
    /// assert_eq!(&vec[..], &[1, 2, 3]);
    /// ```
    ///
    /// # Errors
    ///
    /// This method will return an error if the capacity left (see
    /// [`remaining_capacity`]) is smaller then the length of the provided
    /// slice.
    ///
    /// [`remaining_capacity`]: #method.remaining_capacity
    pub fn try_extend_from_slice(&mut self, other: &[A::Item]) -> Result<(), CapacityError>
        where A::Item: Copy,
    {
        if self.remaining_capacity() < other.len() {
            return Err(CapacityError::new(()));
        }

        let self_len = self.len();
        let other_len = other.len();

        unsafe {
            let dst = self.xs.ptr_mut().add(self_len);
            ptr::copy_nonoverlapping(other.as_ptr(), dst, other_len);
            self.set_len(self_len + other_len);
        }
        Ok(())
    }

    /// Create a draining iterator that removes the specified range in the vector
    /// and yields the removed items from start to end. The element range is
    /// removed even if the iterator is not consumed until the end.
    ///
    /// Note: It is unspecified how many elements are removed from the vector,
    /// if the `Drain` value is leaked.
    ///
    /// **Panics** if the starting point is greater than the end point or if
    /// the end point is greater than the length of the vector.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut v = ArrayVec::from([1, 2, 3]);
    /// let u: ArrayVec<[_; 3]> = v.drain(0..2).collect();
    /// assert_eq!(&v[..], &[3]);
    /// assert_eq!(&u[..], &[1, 2]);
    /// ```
    pub fn drain<R>(&mut self, range: R) -> Drain<A>
        where R: RangeBounds<usize>
    {
        // Memory safety
        //
        // When the Drain is first created, it shortens the length of
        // the source vector to make sure no uninitialized or moved-from elements
        // are accessible at all if the Drain's destructor never gets to run.
        //
        // Drain will ptr::read out the values to remove.
        // When finished, remaining tail of the vec is copied back to cover
        // the hole, and the vector length is restored to the new length.
        //
        let len = self.len();
        let start = match range.start_bound() {
            Bound::Unbounded => 0,
            Bound::Included(&i) => i,
            Bound::Excluded(&i) => i.saturating_add(1),
        };
        let end = match range.end_bound() {
            Bound::Excluded(&j) => j,
            Bound::Included(&j) => j.saturating_add(1),
            Bound::Unbounded => len,
        };
        self.drain_range(start, end)
    }

    fn drain_range(&mut self, start: usize, end: usize) -> Drain<A>
    {
        let len = self.len();

        // bounds check happens here (before length is changed!)
        let range_slice: *const _ = &self[start..end];

        // Calling `set_len` creates a fresh and thus unique mutable references, making all
        // older aliases we created invalid. So we cannot call that function.
        self.len = Index::from(start);

        unsafe {
            Drain {
                tail_start: end,
                tail_len: len - end,
                iter: (*range_slice).iter(),
                vec: self as *mut _,
            }
        }
    }

    /// Return the inner fixed size array, if it is full to its capacity.
    ///
    /// Return an `Ok` value with the array if length equals capacity,
    /// return an `Err` with self otherwise.
    pub fn into_inner(self) -> Result<A, Self> {
        if self.len() < self.capacity() {
            Err(self)
        } else {
            unsafe {
                let array = ptr::read(self.xs.ptr() as *const A);
                mem::forget(self);
                Ok(array)
            }
        }
    }

    /// Dispose of `self` (same as drop)
    #[deprecated="Use std::mem::drop instead, if at all needed."]
    pub fn dispose(mut self) {
        self.clear();
        mem::forget(self);
    }

    /// Return a slice containing all elements of the vector.
    pub fn as_slice(&self) -> &[A::Item] {
        self
    }

    /// Return a mutable slice containing all elements of the vector.
    pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
        self
    }

    /// Return a raw pointer to the vector's buffer.
    pub fn as_ptr(&self) -> *const A::Item {
        self.xs.ptr()
    }

    /// Return a raw mutable pointer to the vector's buffer.
    pub fn as_mut_ptr(&mut self) -> *mut A::Item {
        self.xs.ptr_mut()
    }
}

impl<A: Array> Deref for ArrayVec<A> {
    type Target = [A::Item];
    #[inline]
    fn deref(&self) -> &[A::Item] {
        unsafe {
            slice::from_raw_parts(self.xs.ptr(), self.len())
        }
    }
}

impl<A: Array> DerefMut for ArrayVec<A> {
    #[inline]
    fn deref_mut(&mut self) -> &mut [A::Item] {
        let len = self.len();
        unsafe {
            slice::from_raw_parts_mut(self.xs.ptr_mut(), len)
        }
    }
}

/// Create an `ArrayVec` from an array.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
/// assert_eq!(array.len(), 3);
/// assert_eq!(array.capacity(), 3);
/// ```
impl<A: Array> From<A> for ArrayVec<A> {
    fn from(array: A) -> Self {
        ArrayVec { xs: MaybeUninit::from(array), len: Index::from(A::CAPACITY) }
    }
}


/// Try to create an `ArrayVec` from a slice. This will return an error if the slice was too big to
/// fit.
///
/// ```
/// use arrayvec::ArrayVec;
/// use std::convert::TryInto as _;
///
/// let array: ArrayVec<[_; 4]> = (&[1, 2, 3] as &[_]).try_into().unwrap();
/// assert_eq!(array.len(), 3);
/// assert_eq!(array.capacity(), 4);
/// ```
impl<A: Array> std::convert::TryFrom<&[A::Item]> for ArrayVec<A>
    where
        A::Item: Clone,
{
    type Error = CapacityError;

    fn try_from(slice: &[A::Item]) -> Result<Self, Self::Error> {
        if A::CAPACITY < slice.len() {
            Err(CapacityError::new(()))
        } else {
            let mut array = Self::new();
            array.extend(slice.iter().cloned());
            Ok(array)
        }
    }
}


/// Iterate the `ArrayVec` with references to each element.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let array = ArrayVec::from([1, 2, 3]);
///
/// for elt in &array {
///     // ...
/// }
/// ```
impl<'a, A: Array> IntoIterator for &'a ArrayVec<A> {
    type Item = &'a A::Item;
    type IntoIter = slice::Iter<'a, A::Item>;
    fn into_iter(self) -> Self::IntoIter { self.iter() }
}

/// Iterate the `ArrayVec` with mutable references to each element.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
///
/// for elt in &mut array {
///     // ...
/// }
/// ```
impl<'a, A: Array> IntoIterator for &'a mut ArrayVec<A> {
    type Item = &'a mut A::Item;
    type IntoIter = slice::IterMut<'a, A::Item>;
    fn into_iter(self) -> Self::IntoIter { self.iter_mut() }
}

/// Iterate the `ArrayVec` with each element by value.
///
/// The vector is consumed by this operation.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// for elt in ArrayVec::from([1, 2, 3]) {
///     // ...
/// }
/// ```
impl<A: Array> IntoIterator for ArrayVec<A> {
    type Item = A::Item;
    type IntoIter = IntoIter<A>;
    fn into_iter(self) -> IntoIter<A> {
        IntoIter { index: Index::from(0), v: self, }
    }
}


/// By-value iterator for `ArrayVec`.
pub struct IntoIter<A: Array> {
    index: A::Index,
    v: ArrayVec<A>,
}

impl<A: Array> Iterator for IntoIter<A> {
    type Item = A::Item;

    fn next(&mut self) -> Option<A::Item> {
        if self.index == self.v.len {
            None
        } else {
            unsafe {
                let index = self.index.to_usize();
                self.index = Index::from(index + 1);
                Some(ptr::read(self.v.get_unchecked_ptr(index)))
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.v.len() - self.index.to_usize();
        (len, Some(len))
    }
}

impl<A: Array> DoubleEndedIterator for IntoIter<A> {
    fn next_back(&mut self) -> Option<A::Item> {
        if self.index == self.v.len {
            None
        } else {
            unsafe {
                let new_len = self.v.len() - 1;
                self.v.set_len(new_len);
                Some(ptr::read(self.v.get_unchecked_ptr(new_len)))
            }
        }
    }
}

impl<A: Array> ExactSizeIterator for IntoIter<A> { }

impl<A: Array> Drop for IntoIter<A> {
    fn drop(&mut self) {
        // panic safety: Set length to 0 before dropping elements.
        let index = self.index.to_usize();
        let len = self.v.len();
        unsafe {
            self.v.set_len(0);
            let elements = slice::from_raw_parts_mut(
                self.v.get_unchecked_ptr(index),
                len - index);
            ptr::drop_in_place(elements);
        }
    }
}

impl<A: Array> Clone for IntoIter<A>
where
    A::Item: Clone,
{
    fn clone(&self) -> IntoIter<A> {
        self.v[self.index.to_usize()..]
            .iter()
            .cloned()
            .collect::<ArrayVec<A>>()
            .into_iter()
    }
}

impl<A: Array> fmt::Debug for IntoIter<A>
where
    A::Item: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_list()
            .entries(&self.v[self.index.to_usize()..])
            .finish()
    }
}

/// A draining iterator for `ArrayVec`.
pub struct Drain<'a, A> 
    where A: Array,
          A::Item: 'a,
{
    /// Index of tail to preserve
    tail_start: usize,
    /// Length of tail
    tail_len: usize,
    /// Current remaining range to remove
    iter: slice::Iter<'a, A::Item>,
    vec: *mut ArrayVec<A>,
}

unsafe impl<'a, A: Array + Sync> Sync for Drain<'a, A> {}
unsafe impl<'a, A: Array + Send> Send for Drain<'a, A> {}

impl<'a, A: Array> Iterator for Drain<'a, A>
    where A::Item: 'a,
{
    type Item = A::Item;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|elt|
            unsafe {
                ptr::read(elt as *const _)
            }
        )
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, A: Array> DoubleEndedIterator for Drain<'a, A>
    where A::Item: 'a,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().map(|elt|
            unsafe {
                ptr::read(elt as *const _)
            }
        )
    }
}

impl<'a, A: Array> ExactSizeIterator for Drain<'a, A> where A::Item: 'a {}

impl<'a, A: Array> Drop for Drain<'a, A> 
    where A::Item: 'a
{
    fn drop(&mut self) {
        // len is currently 0 so panicking while dropping will not cause a double drop.

        // exhaust self first
        while let Some(_) = self.next() { }

        if self.tail_len > 0 {
            unsafe {
                let source_vec = &mut *self.vec;
                // memmove back untouched tail, update to new length
                let start = source_vec.len();
                let tail = self.tail_start;
                let src = source_vec.as_ptr().add(tail);
                let dst = source_vec.as_mut_ptr().add(start);
                ptr::copy(src, dst, self.tail_len);
                source_vec.set_len(start + self.tail_len);
            }
        }
    }
}

struct ScopeExitGuard<T, Data, F>
    where F: FnMut(&Data, &mut T)
{
    value: T,
    data: Data,
    f: F,
}

impl<T, Data, F> Drop for ScopeExitGuard<T, Data, F>
    where F: FnMut(&Data, &mut T)
{
    fn drop(&mut self) {
        (self.f)(&self.data, &mut self.value)
    }
}



/// Extend the `ArrayVec` with an iterator.
/// 
/// Does not extract more items than there is space for. No error
/// occurs if there are more iterator elements.
impl<A: Array> Extend<A::Item> for ArrayVec<A> {
    fn extend<T: IntoIterator<Item=A::Item>>(&mut self, iter: T) {
        let take = self.capacity() - self.len();
        unsafe {
            let len = self.len();
            let mut ptr = raw_ptr_add(self.as_mut_ptr(), len);
            let end_ptr = raw_ptr_add(ptr, take);
            // Keep the length in a separate variable, write it back on scope
            // exit. To help the compiler with alias analysis and stuff.
            // We update the length to handle panic in the iteration of the
            // user's iterator, without dropping any elements on the floor.
            let mut guard = ScopeExitGuard {
                value: &mut self.len,
                data: len,
                f: move |&len, self_len| {
                    **self_len = Index::from(len);
                }
            };
            let mut iter = iter.into_iter();
            loop {
                if ptr == end_ptr { break; }
                if let Some(elt) = iter.next() {
                    raw_ptr_write(ptr, elt);
                    ptr = raw_ptr_add(ptr, 1);
                    guard.data += 1;
                } else {
                    break;
                }
            }
        }
    }
}

/// Rawptr add but uses arithmetic distance for ZST
unsafe fn raw_ptr_add<T>(ptr: *mut T, offset: usize) -> *mut T {
    if mem::size_of::<T>() == 0 {
        // Special case for ZST
        (ptr as usize).wrapping_add(offset) as _
    } else {
        ptr.add(offset)
    }
}

unsafe fn raw_ptr_write<T>(ptr: *mut T, value: T) {
    if mem::size_of::<T>() == 0 {
        /* nothing */
    } else {
        ptr::write(ptr, value)
    }
}

/// Create an `ArrayVec` from an iterator.
/// 
/// Does not extract more items than there is space for. No error
/// occurs if there are more iterator elements.
impl<A: Array> iter::FromIterator<A::Item> for ArrayVec<A> {
    fn from_iter<T: IntoIterator<Item=A::Item>>(iter: T) -> Self {
        let mut array = ArrayVec::new();
        array.extend(iter);
        array
    }
}

impl<A: Array> Clone for ArrayVec<A>
    where A::Item: Clone
{
    fn clone(&self) -> Self {
        self.iter().cloned().collect()
    }

    fn clone_from(&mut self, rhs: &Self) {
        // recursive case for the common prefix
        let prefix = cmp::min(self.len(), rhs.len());
        self[..prefix].clone_from_slice(&rhs[..prefix]);

        if prefix < self.len() {
            // rhs was shorter
            for _ in 0..self.len() - prefix {
                self.pop();
            }
        } else {
            let rhs_elems = rhs[self.len()..].iter().cloned();
            self.extend(rhs_elems);
        }
    }
}

impl<A: Array> Hash for ArrayVec<A>
    where A::Item: Hash
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        Hash::hash(&**self, state)
    }
}

impl<A: Array> PartialEq for ArrayVec<A>
    where A::Item: PartialEq
{
    fn eq(&self, other: &Self) -> bool {
        **self == **other
    }
}

impl<A: Array> PartialEq<[A::Item]> for ArrayVec<A>
    where A::Item: PartialEq
{
    fn eq(&self, other: &[A::Item]) -> bool {
        **self == *other
    }
}

impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq { }

impl<A: Array> Borrow<[A::Item]> for ArrayVec<A> {
    fn borrow(&self) -> &[A::Item] { self }
}

impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A> {
    fn borrow_mut(&mut self) -> &mut [A::Item] { self }
}

impl<A: Array> AsRef<[A::Item]> for ArrayVec<A> {
    fn as_ref(&self) -> &[A::Item] { self }
}

impl<A: Array> AsMut<[A::Item]> for ArrayVec<A> {
    fn as_mut(&mut self) -> &mut [A::Item] { self }
}

impl<A: Array> fmt::Debug for ArrayVec<A> where A::Item: fmt::Debug {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
}

impl<A: Array> Default for ArrayVec<A> {
    /// Return an empty array
    fn default() -> ArrayVec<A> {
        ArrayVec::new()
    }
}

impl<A: Array> PartialOrd for ArrayVec<A> where A::Item: PartialOrd {
    fn partial_cmp(&self, other: &ArrayVec<A>) -> Option<cmp::Ordering> {
        (**self).partial_cmp(other)
    }

    fn lt(&self, other: &Self) -> bool {
        (**self).lt(other)
    }

    fn le(&self, other: &Self) -> bool {
        (**self).le(other)
    }

    fn ge(&self, other: &Self) -> bool {
        (**self).ge(other)
    }

    fn gt(&self, other: &Self) -> bool {
        (**self).gt(other)
    }
}

impl<A: Array> Ord for ArrayVec<A> where A::Item: Ord {
    fn cmp(&self, other: &ArrayVec<A>) -> cmp::Ordering {
        (**self).cmp(other)
    }
}

#[cfg(feature="std")]
/// `Write` appends written data to the end of the vector.
///
/// Requires `features="std"`.
impl<A: Array<Item=u8>> io::Write for ArrayVec<A> {
    fn write(&mut self, data: &[u8]) -> io::Result<usize> {
        let len = cmp::min(self.remaining_capacity(), data.len());
        let _result = self.try_extend_from_slice(&data[..len]);
        debug_assert!(_result.is_ok());
        Ok(len)
    }
    fn flush(&mut self) -> io::Result<()> { Ok(()) }
}

#[cfg(feature="serde")]
/// Requires crate feature `"serde"`
impl<T: Serialize, A: Array<Item=T>> Serialize for ArrayVec<A> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where S: Serializer
    {
        serializer.collect_seq(self)
    }
}

#[cfg(feature="serde")]
/// Requires crate feature `"serde"`
impl<'de, T: Deserialize<'de>, A: Array<Item=T>> Deserialize<'de> for ArrayVec<A> {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where D: Deserializer<'de>
    {
        use serde::de::{Visitor, SeqAccess, Error};
        use std::marker::PhantomData;

        struct ArrayVecVisitor<'de, T: Deserialize<'de>, A: Array<Item=T>>(PhantomData<(&'de (), T, A)>);

        impl<'de, T: Deserialize<'de>, A: Array<Item=T>> Visitor<'de> for ArrayVecVisitor<'de, T, A> {
            type Value = ArrayVec<A>;

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                write!(formatter, "an array with no more than {} items", A::CAPACITY)
            }

            fn visit_seq<SA>(self, mut seq: SA) -> Result<Self::Value, SA::Error>
                where SA: SeqAccess<'de>,
            {
                let mut values = ArrayVec::<A>::new();

                while let Some(value) = seq.next_element()? {
                    if let Err(_) = values.try_push(value) {
                        return Err(SA::Error::invalid_length(A::CAPACITY + 1, &self));
                    }
                }

                Ok(values)
            }
        }

        deserializer.deserialize_seq(ArrayVecVisitor::<T, A>(PhantomData))
    }
}