candid/
ser.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
//! Serialize a Rust data structure to Candid binary format

use super::error::{Error, Result};
use super::types;
#[cfg(feature = "value")]
use super::types::value::IDLValue;
use super::types::{internal::Opcode, Field, Type, TypeEnv, TypeInner};
use byteorder::{LittleEndian, WriteBytesExt};
use leb128::write::{signed as sleb128_encode, unsigned as leb128_encode};
use std::collections::{BTreeMap, TryReserveError};
use std::io;
use std::vec::Vec;

/// Use this struct to serialize a sequence of Rust values (heterogeneous) to IDL binary message.
#[derive(Default)]
pub struct IDLBuilder {
    type_ser: TypeSerialize,
    value_ser: ValueSerializer,
}

impl IDLBuilder {
    pub fn new() -> Self {
        // We cannot share the memo table across different Builder. Because the same Rust
        // type can map to a different but equivalent candid type for different builder,
        // due to memo match happening in different time/order.
        types::internal::env_clear();
        IDLBuilder {
            type_ser: TypeSerialize::new(),
            value_ser: ValueSerializer::new(),
        }
    }
    pub fn arg<'a, T: types::CandidType>(&'a mut self, value: &T) -> Result<&'a mut Self> {
        self.type_ser.push_type(&T::ty())?;
        value.idl_serialize(&mut self.value_ser)?;
        Ok(self)
    }
    #[cfg_attr(docsrs, doc(cfg(feature = "value")))]
    #[cfg(feature = "value")]
    pub fn value_arg<'a>(&'a mut self, value: &IDLValue) -> Result<&'a mut Self> {
        use super::CandidType;
        self.type_ser.push_type(&value.value_ty())?;
        value.idl_serialize(&mut self.value_ser)?;
        Ok(self)
    }
    #[cfg_attr(docsrs, doc(cfg(feature = "value")))]
    #[cfg(feature = "value")]
    /// Annotate IDLValue with (TypeEnv, Type). Note that the TypeEnv will be added to the serializer state.
    /// If the Type can already be resolved by previous TypeEnvs, you don't need to pass TypeEnv again.
    pub fn value_arg_with_type<'a>(
        &'a mut self,
        value: &IDLValue,
        env: &TypeEnv,
        t: &Type,
    ) -> Result<&'a mut Self> {
        use super::CandidType;
        let env = self.type_ser.env.merge(env)?;
        let v = value.annotate_type(true, env, t)?;
        self.type_ser.push_type(t)?;
        v.idl_serialize(&mut self.value_ser)?;
        Ok(self)
    }
    pub fn serialize<W: io::Write>(&mut self, mut writer: W) -> Result<()> {
        writer.write_all(b"DIDL")?;
        self.type_ser.serialize()?;
        writer.write_all(self.type_ser.get_result())?;
        writer.write_all(self.value_ser.get_result())?;
        Ok(())
    }
    pub fn serialize_to_vec(&mut self) -> Result<Vec<u8>> {
        let mut vec = Vec::new();
        self.serialize(&mut vec)?;
        Ok(vec)
    }
    /// If serializing a large amount of data, you can try to reserve the capacity of the
    /// value serializer ahead of time to avoid reallocation.
    pub fn try_reserve_value_serializer_capacity(
        &mut self,
        additional: usize,
    ) -> std::result::Result<(), TryReserveError> {
        self.value_ser.try_reserve(additional)
    }
}

/// A structure for serializing Rust values to IDL.
#[derive(Default)]
pub struct ValueSerializer {
    value: Vec<u8>,
}

impl ValueSerializer {
    /// Creates a new IDL serializer.
    #[inline]
    pub fn new() -> Self {
        ValueSerializer { value: Vec::new() }
    }
    pub fn get_result(&self) -> &[u8] {
        &self.value
    }
    #[doc(hidden)]
    pub fn write_leb128(&mut self, value: u64) -> Result<()> {
        leb128_encode(&mut self.value, value)?;
        Ok(())
    }
    #[doc(hidden)]
    pub fn write(&mut self, bytes: &[u8]) -> Result<()> {
        use std::io::Write;
        self.value.write_all(bytes)?;
        Ok(())
    }
    #[doc(hidden)]
    pub fn try_reserve(&mut self, additional: usize) -> std::result::Result<(), TryReserveError> {
        self.value.try_reserve(additional)
    }
}

macro_rules! serialize_num {
    ($name:ident, $ty:ty, $($method:tt)*) => {
        paste::item! {
            fn [<serialize_ $name>](self, v: $ty) -> Result<()> {
                self.value.$($method)*(v)?;
                Ok(())
            }
        }
    };
}

impl<'a> types::Serializer for &'a mut ValueSerializer {
    type Error = Error;
    type Compound = Compound<'a>;
    fn serialize_bool(self, v: bool) -> Result<()> {
        self.write(&[v as u8])?;
        Ok(())
    }
    #[cfg(feature = "bignum")]
    fn serialize_int(self, v: &crate::Int) -> Result<()> {
        v.encode(&mut self.value)
    }
    #[cfg(feature = "bignum")]
    fn serialize_nat(self, v: &crate::Nat) -> Result<()> {
        v.encode(&mut self.value)
    }
    fn serialize_i128(self, v: i128) -> Result<()> {
        crate::types::leb128::encode_int(&mut self.value, v)
    }
    fn serialize_u128(self, v: u128) -> Result<()> {
        crate::types::leb128::encode_nat(&mut self.value, v)
    }
    serialize_num!(nat8, u8, write_u8);
    serialize_num!(nat16, u16, write_u16::<LittleEndian>);
    serialize_num!(nat32, u32, write_u32::<LittleEndian>);
    serialize_num!(nat64, u64, write_u64::<LittleEndian>);

    serialize_num!(int8, i8, write_i8);
    serialize_num!(int16, i16, write_i16::<LittleEndian>);
    serialize_num!(int32, i32, write_i32::<LittleEndian>);
    serialize_num!(int64, i64, write_i64::<LittleEndian>);

    serialize_num!(float32, f32, write_f32::<LittleEndian>);
    serialize_num!(float64, f64, write_f64::<LittleEndian>);

    fn serialize_text(self, v: &str) -> Result<()> {
        let buf = v.as_bytes();
        self.write_leb128(buf.len() as u64)?;
        self.value.extend_from_slice(buf);
        Ok(())
    }
    fn serialize_null(self, _v: ()) -> Result<()> {
        Ok(())
    }
    fn serialize_empty(self) -> Result<()> {
        Err(Error::msg("cannot encode empty type"))
    }
    fn serialize_principal(self, blob: &[u8]) -> Result<()> {
        self.write(&[1])?;
        self.write_leb128(blob.len() as u64)?;
        self.write(blob)?;
        Ok(())
    }
    fn serialize_function(self, blob: &[u8], meth: &str) -> Result<()> {
        self.write(&[1])?;
        self.serialize_principal(blob)?;
        self.serialize_text(meth)
    }
    fn serialize_option<T>(self, v: Option<&T>) -> Result<()>
    where
        T: super::CandidType + ?Sized,
    {
        match v {
            None => {
                self.write_leb128(0)?;
                Ok(())
            }
            Some(v) => {
                self.write_leb128(1)?;
                v.idl_serialize(self)
            }
        }
    }
    fn serialize_variant(self, index: u64) -> Result<Self::Compound> {
        self.write_leb128(index)?;
        Ok(Self::Compound { ser: self })
    }
    fn serialize_struct(self) -> Result<Self::Compound> {
        Ok(Self::Compound { ser: self })
    }
    fn serialize_vec(self, len: usize) -> Result<Self::Compound> {
        self.write_leb128(len as u64)?;
        Ok(Self::Compound { ser: self })
    }
    fn serialize_blob(self, blob: &[u8]) -> Result<()> {
        self.write_leb128(blob.len() as u64)?;
        self.write(blob)?;
        Ok(())
    }
}

pub struct Compound<'a> {
    ser: &'a mut ValueSerializer,
}
impl types::Compound for Compound<'_> {
    type Error = Error;
    fn serialize_element<T>(&mut self, value: &T) -> Result<()>
    where
        T: types::CandidType + ?Sized,
    {
        value.idl_serialize(&mut *self.ser)?;
        Ok(())
    }
    fn serialize_blob(&mut self, blob: &[u8]) -> Result<()> {
        use crate::types::Serializer;
        self.ser.serialize_blob(blob)
    }
}

/// A structure for serializing Rust values to IDL types.
#[derive(Default)]
pub struct TypeSerialize {
    type_table: Vec<Vec<u8>>,
    type_map: BTreeMap<Type, i32>,
    env: TypeEnv,
    args: Vec<Type>,
    result: Vec<u8>,
}

impl TypeSerialize {
    #[inline]
    pub fn new() -> Self {
        TypeSerialize {
            type_table: Vec::new(),
            type_map: BTreeMap::new(),
            env: TypeEnv::new(),
            args: Vec::new(),
            result: Vec::new(),
        }
    }
    pub fn get_result(&self) -> &[u8] {
        &self.result
    }
    #[inline]
    fn build_type(&mut self, t: &Type) -> Result<()> {
        if self.type_map.contains_key(t) {
            return Ok(());
        }
        let actual_type = if let TypeInner::Var(id) = t.as_ref() {
            self.env.rec_find_type(id)?
        } else {
            t
        }
        .clone();
        if types::internal::is_primitive(&actual_type) {
            return Ok(());
        }
        // This is a hack to remove (some) equivalent mu types
        // from the type table.
        // Someone should implement Pottier's O(nlogn) algorithm
        // http://gallium.inria.fr/~fpottier/publis/gauthier-fpottier-icfp04.pdf
        // Disable this "optimization", as unroll is expensive and has to be called on every recursion.
        // let unrolled = types::internal::unroll(t);
        // if let Some(idx) = self.type_map.get(&unrolled) {
        //    let idx = *idx;
        //    self.type_map.insert(t.clone(), idx);
        //    return Ok(());
        // }

        let idx = self.type_table.len();
        self.type_map.insert(t.clone(), idx as i32);
        self.type_table.push(Vec::new());
        let mut buf = Vec::new();
        match actual_type.as_ref() {
            TypeInner::Opt(ref ty) => {
                self.build_type(ty)?;
                sleb128_encode(&mut buf, Opcode::Opt as i64)?;
                self.encode(&mut buf, ty)?;
            }
            TypeInner::Vec(ref ty) => {
                self.build_type(ty)?;
                sleb128_encode(&mut buf, Opcode::Vec as i64)?;
                self.encode(&mut buf, ty)?;
            }
            TypeInner::Record(fs) => {
                for Field { ty, .. } in fs {
                    self.build_type(ty)?;
                }

                sleb128_encode(&mut buf, Opcode::Record as i64)?;
                leb128_encode(&mut buf, fs.len() as u64)?;
                for Field { id, ty } in fs {
                    leb128_encode(&mut buf, u64::from(id.get_id()))?;
                    self.encode(&mut buf, ty)?;
                }
            }
            TypeInner::Variant(fs) => {
                for Field { ty, .. } in fs {
                    self.build_type(ty)?;
                }

                sleb128_encode(&mut buf, Opcode::Variant as i64)?;
                leb128_encode(&mut buf, fs.len() as u64)?;
                for Field { id, ty } in fs {
                    leb128_encode(&mut buf, u64::from(id.get_id()))?;
                    self.encode(&mut buf, ty)?;
                }
            }
            TypeInner::Service(ref ms) => {
                for (_, ty) in ms {
                    self.build_type(ty)?;
                }
                sleb128_encode(&mut buf, Opcode::Service as i64)?;
                leb128_encode(&mut buf, ms.len() as u64)?;
                for (id, ty) in ms {
                    let name = id.as_bytes();
                    leb128_encode(&mut buf, name.len() as u64)?;
                    buf.extend_from_slice(name);
                    self.encode(&mut buf, ty)?;
                }
            }
            TypeInner::Func(ref func) => {
                for ty in func.args.iter().chain(func.rets.iter()) {
                    self.build_type(ty)?;
                }
                sleb128_encode(&mut buf, Opcode::Func as i64)?;
                leb128_encode(&mut buf, func.args.len() as u64)?;
                for ty in &func.args {
                    self.encode(&mut buf, ty)?;
                }
                leb128_encode(&mut buf, func.rets.len() as u64)?;
                for ty in &func.rets {
                    self.encode(&mut buf, ty)?;
                }
                leb128_encode(&mut buf, func.modes.len() as u64)?;
                for m in &func.modes {
                    use crate::types::FuncMode;
                    let m = match m {
                        FuncMode::Query => 1,
                        FuncMode::Oneway => 2,
                        FuncMode::CompositeQuery => 3,
                    };
                    sleb128_encode(&mut buf, m)?;
                }
            }
            _ => unreachable!(),
        };
        self.type_table[idx] = buf;
        Ok(())
    }
    #[doc(hidden)]
    pub fn push_type(&mut self, t: &Type) -> Result<()> {
        self.args.push(t.clone());
        self.build_type(t)
    }
    fn encode(&self, buf: &mut Vec<u8>, t: &Type) -> Result<()> {
        if let TypeInner::Var(id) = t.as_ref() {
            let actual_type = self.env.rec_find_type(id)?;
            if types::internal::is_primitive(actual_type) {
                return self.encode(buf, actual_type);
            }
        }
        match t.as_ref() {
            TypeInner::Null => sleb128_encode(buf, Opcode::Null as i64),
            TypeInner::Bool => sleb128_encode(buf, Opcode::Bool as i64),
            TypeInner::Nat => sleb128_encode(buf, Opcode::Nat as i64),
            TypeInner::Int => sleb128_encode(buf, Opcode::Int as i64),
            TypeInner::Nat8 => sleb128_encode(buf, Opcode::Nat8 as i64),
            TypeInner::Nat16 => sleb128_encode(buf, Opcode::Nat16 as i64),
            TypeInner::Nat32 => sleb128_encode(buf, Opcode::Nat32 as i64),
            TypeInner::Nat64 => sleb128_encode(buf, Opcode::Nat64 as i64),
            TypeInner::Int8 => sleb128_encode(buf, Opcode::Int8 as i64),
            TypeInner::Int16 => sleb128_encode(buf, Opcode::Int16 as i64),
            TypeInner::Int32 => sleb128_encode(buf, Opcode::Int32 as i64),
            TypeInner::Int64 => sleb128_encode(buf, Opcode::Int64 as i64),
            TypeInner::Float32 => sleb128_encode(buf, Opcode::Float32 as i64),
            TypeInner::Float64 => sleb128_encode(buf, Opcode::Float64 as i64),
            TypeInner::Text => sleb128_encode(buf, Opcode::Text as i64),
            TypeInner::Reserved => sleb128_encode(buf, Opcode::Reserved as i64),
            TypeInner::Empty => sleb128_encode(buf, Opcode::Empty as i64),
            TypeInner::Principal => sleb128_encode(buf, Opcode::Principal as i64),
            TypeInner::Knot(ref id) => {
                let ty = types::internal::find_type(id)
                    .ok_or_else(|| Error::msg("knot TypeId not found"))?;
                let idx = self
                    .type_map
                    .get(&ty)
                    .ok_or_else(|| Error::msg(format!("knot type {ty} not found")))?;
                sleb128_encode(buf, i64::from(*idx))
            }
            TypeInner::Var(_) => {
                let idx = self
                    .type_map
                    .get(t)
                    .ok_or_else(|| Error::msg(format!("var type {t} not found")))?;
                sleb128_encode(buf, i64::from(*idx))
            }
            TypeInner::Future => unreachable!(),
            _ => {
                let idx = self
                    .type_map
                    .get(t)
                    .ok_or_else(|| Error::msg(format!("type {t} not found")))?;
                sleb128_encode(buf, i64::from(*idx))
            }
        }?;
        Ok(())
    }
    #[doc(hidden)]
    pub fn serialize(&mut self) -> Result<()> {
        leb128_encode(&mut self.result, self.type_table.len() as u64)?;
        self.result.append(&mut self.type_table.concat());

        leb128_encode(&mut self.result, self.args.len() as u64)?;
        let mut ty_encode = Vec::new();
        for t in &self.args {
            self.encode(&mut ty_encode, t)?;
        }
        self.result.append(&mut ty_encode);
        Ok(())
    }
}