candid/types/
number.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
//! Data structure for Candid type Int, Nat, supporting big integer with LEB128 encoding.

use super::{CandidType, Serializer, Type, TypeInner};
use crate::{utils::pp_num_str, Error};
use num_bigint::{BigInt, BigUint};
use serde::{
    de::{self, Deserialize, SeqAccess, Visitor},
    Serialize,
};
use std::convert::From;
use std::{fmt, io};

#[derive(Serialize, Ord, PartialOrd, Eq, PartialEq, Debug, Clone, Hash, Default)]
pub struct Int(pub BigInt);
#[derive(Serialize, Ord, PartialOrd, Eq, PartialEq, Debug, Clone, Hash, Default)]
pub struct Nat(pub BigUint);

impl From<BigInt> for Int {
    fn from(i: BigInt) -> Self {
        Self(i)
    }
}

impl From<BigUint> for Nat {
    fn from(i: BigUint) -> Self {
        Self(i)
    }
}

impl From<Nat> for Int {
    fn from(n: Nat) -> Self {
        let i: BigInt = n.0.into();
        i.into()
    }
}

impl From<Int> for BigInt {
    fn from(i: Int) -> Self {
        i.0
    }
}

impl From<Nat> for BigUint {
    fn from(i: Nat) -> Self {
        i.0
    }
}

impl From<Nat> for BigInt {
    fn from(i: Nat) -> Self {
        i.0.into()
    }
}

impl Int {
    #[inline]
    pub fn parse(v: &[u8]) -> crate::Result<Self> {
        let res = BigInt::parse_bytes(v, 10).ok_or_else(|| Error::msg("Cannot parse BigInt"))?;
        Ok(Int(res))
    }
}

impl Nat {
    #[inline]
    pub fn parse(v: &[u8]) -> crate::Result<Self> {
        let res = BigUint::parse_bytes(v, 10).ok_or_else(|| Error::msg("Cannot parse BigUint"))?;
        Ok(Nat(res))
    }
}

impl std::str::FromStr for Int {
    type Err = crate::Error;
    fn from_str(str: &str) -> Result<Self, Self::Err> {
        Self::parse(str.as_bytes())
    }
}

impl std::str::FromStr for Nat {
    type Err = crate::Error;
    fn from_str(str: &str) -> Result<Self, Self::Err> {
        Self::parse(str.as_bytes())
    }
}

impl fmt::Display for Int {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let s = self.0.to_str_radix(10);
        f.write_str(&pp_num_str(&s))
    }
}

impl fmt::Display for Nat {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let s = self.0.to_str_radix(10);
        f.write_str(&pp_num_str(&s))
    }
}

impl CandidType for Int {
    fn _ty() -> Type {
        TypeInner::Int.into()
    }
    fn idl_serialize<S>(&self, serializer: S) -> Result<(), S::Error>
    where
        S: Serializer,
    {
        serializer.serialize_int(self)
    }
}

impl CandidType for Nat {
    fn _ty() -> Type {
        TypeInner::Nat.into()
    }
    fn idl_serialize<S>(&self, serializer: S) -> Result<(), S::Error>
    where
        S: Serializer,
    {
        serializer.serialize_nat(self)
    }
}

impl<'de> Deserialize<'de> for Int {
    fn deserialize<D>(deserializer: D) -> Result<Int, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        struct IntVisitor;
        impl Visitor<'_> for IntVisitor {
            type Value = Int;
            fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
                formatter.write_str("Int value")
            }
            fn visit_i64<E>(self, v: i64) -> Result<Int, E> {
                Ok(Int::from(v))
            }
            fn visit_u64<E>(self, v: u64) -> Result<Int, E> {
                Ok(Int::from(v))
            }
            fn visit_str<E: de::Error>(self, v: &str) -> Result<Int, E> {
                v.parse::<Int>()
                    .map_err(|_| de::Error::custom(format!("{v:?} is not int")))
            }
            fn visit_byte_buf<E: de::Error>(self, v: Vec<u8>) -> Result<Int, E> {
                Ok(Int(match v.first() {
                    Some(0) => BigInt::from_signed_bytes_le(&v[1..]),
                    Some(1) => BigInt::from_biguint(
                        num_bigint::Sign::Plus,
                        BigUint::from_bytes_le(&v[1..]),
                    ),
                    _ => return Err(de::Error::custom("not int nor nat")),
                }))
            }
        }
        deserializer.deserialize_any(IntVisitor)
    }
}

impl<'de> Deserialize<'de> for Nat {
    fn deserialize<D>(deserializer: D) -> Result<Nat, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        struct NatVisitor;
        impl<'de> Visitor<'de> for NatVisitor {
            type Value = Nat;
            fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
                formatter.write_str("Nat value")
            }
            fn visit_i64<E: de::Error>(self, v: i64) -> Result<Nat, E> {
                use num_bigint::ToBigUint;
                v.to_biguint()
                    .ok_or_else(|| de::Error::custom("i64 cannot be converted to nat"))
                    .map(Nat)
            }
            fn visit_u64<E>(self, v: u64) -> Result<Nat, E> {
                Ok(Nat::from(v))
            }
            fn visit_str<E: de::Error>(self, v: &str) -> Result<Nat, E> {
                v.parse::<Nat>()
                    .map_err(|_| de::Error::custom(format!("{v:?} is not nat")))
            }
            fn visit_byte_buf<E: de::Error>(self, v: Vec<u8>) -> Result<Nat, E> {
                if v[0] == 1 {
                    Ok(Nat(BigUint::from_bytes_le(&v[1..])))
                } else {
                    Err(de::Error::custom("not nat"))
                }
            }

            fn visit_seq<S>(self, mut seq: S) -> Result<Nat, S::Error>
            where
                S: SeqAccess<'de>,
            {
                let len = seq.size_hint().unwrap_or(0);
                let mut data = Vec::with_capacity(len);

                while let Some(value) = seq.next_element::<u32>()? {
                    data.push(value);
                }

                Ok(Nat(BigUint::new(data)))
            }
        }
        deserializer.deserialize_any(NatVisitor)
    }
}

// LEB128 encoding for bignum.

impl Nat {
    pub fn encode<W>(&self, w: &mut W) -> crate::Result<()>
    where
        W: ?Sized + io::Write,
    {
        use num_traits::cast::ToPrimitive;
        let zero = BigUint::from(0u8);
        let mut value = self.0.clone();
        loop {
            let big_byte = &value & BigUint::from(0x7fu8);
            let mut byte = big_byte.to_u8().unwrap();
            value >>= 7;
            if value != zero {
                byte |= 0x80u8;
            }
            let buf = [byte];
            w.write_all(&buf)?;
            if value == zero {
                return Ok(());
            }
        }
    }
    pub fn decode<R>(r: &mut R) -> crate::Result<Self>
    where
        R: io::Read,
    {
        let mut result = BigUint::from(0u8);
        let mut shift = 0;
        loop {
            let mut buf = [0];
            r.read_exact(&mut buf)?;
            let low_bits = BigUint::from(buf[0] & 0x7fu8);
            result |= low_bits << shift;
            if buf[0] & 0x80u8 == 0 {
                return Ok(Nat(result));
            }
            shift += 7;
        }
    }
}

impl Int {
    pub fn encode<W>(&self, w: &mut W) -> crate::Result<()>
    where
        W: ?Sized + io::Write,
    {
        use num_traits::cast::ToPrimitive;
        let zero = BigInt::from(0);
        let mut value = self.0.clone();
        loop {
            let big_byte = &value & BigInt::from(0xff);
            let mut byte = big_byte.to_u8().unwrap();
            value >>= 6;
            let done = value == zero || value == BigInt::from(-1);
            if done {
                byte &= 0x7f;
            } else {
                value >>= 1;
                byte |= 0x80;
            }
            let buf = [byte];
            w.write_all(&buf)?;
            if done {
                return Ok(());
            }
        }
    }
    pub fn decode<R>(r: &mut R) -> crate::Result<Self>
    where
        R: io::Read,
    {
        let mut result = BigInt::from(0);
        let mut shift = 0;
        let mut byte;
        loop {
            let mut buf = [0];
            r.read_exact(&mut buf)?;
            byte = buf[0];
            let low_bits = BigInt::from(byte & 0x7fu8);
            result |= low_bits << shift;
            shift += 7;
            if byte & 0x80u8 == 0 {
                break;
            }
        }
        if (0x40u8 & byte) == 0x40u8 {
            result |= BigInt::from(-1) << shift;
        }
        Ok(Int(result))
    }
}

// Define all operators and traits relevant for Nat and Int.
use std::cmp::{Ord, Ordering, PartialEq, PartialOrd};
use std::ops::*;

macro_rules! define_from {
    ($f: ty, $($t: ty)*) => ($(
        impl From<$t> for $f {
            #[inline]
            fn from(v: $t) -> Self { Self(v.into()) }
        }
    )*)
}

macro_rules! define_eq {
    ($f: ty, $($t: ty)*) => ($(
        impl PartialEq<$t> for $f {
            #[inline]
            #[must_use]
            fn eq(&self, v: &$t) -> bool { self.0.eq(&(*v).into()) }
        }
        impl PartialEq<$f> for $t {
            #[inline]
            #[must_use]
            fn eq(&self, v: &$f) -> bool { v.0.eq(&(*self).into()) }
        }
    )*)
}

macro_rules! define_op {
    (impl $imp: ident < $scalar: ty > for $res: ty, $method: ident) => {
        // Implement A * B
        impl $imp<$scalar> for $res {
            type Output = $res;

            #[inline]
            fn $method(self, other: $scalar) -> $res {
                $imp::$method(self.0, &other).into()
            }
        }

        // Implement B * A
        impl $imp<$res> for $scalar {
            type Output = $res;

            #[inline]
            fn $method(self, other: $res) -> $res {
                $imp::$method(&self, other.0).into()
            }
        }
    };
}

macro_rules! define_ord {
    ($scalar: ty, $res: ty) => {
        // A < B
        impl PartialOrd<$scalar> for $res {
            #[inline]
            fn partial_cmp(&self, other: &$scalar) -> Option<Ordering> {
                PartialOrd::partial_cmp(self, &<$res>::from(*other))
            }
        }
        // B < A
        impl PartialOrd<$res> for $scalar {
            #[inline]
            fn partial_cmp(&self, other: &$res) -> Option<Ordering> {
                PartialOrd::partial_cmp(&<$res>::from(*self), other)
            }
        }
    };
}

macro_rules! define_op_assign {
    (impl $imp: ident < $scalar: ty > for $res: ty, $method: ident) => {
        // Implement A * B
        impl $imp<$scalar> for $res {
            #[inline]
            fn $method(&mut self, other: $scalar) {
                $imp::$method(&mut self.0, other)
            }
        }
    };
}

macro_rules! define_ops {
    ($f: ty, $($t: ty)*) => ($(
        define_op!(impl Add<$t> for $f, add);
        define_op!(impl Sub<$t> for $f, sub);
        define_op!(impl Mul<$t> for $f, mul);
        define_op!(impl Div<$t> for $f, div);
        define_op!(impl Rem<$t> for $f, rem);

        define_ord!($t, $f);

        define_op_assign!(impl AddAssign<$t> for $f, add_assign);
        define_op_assign!(impl SubAssign<$t> for $f, sub_assign);
        define_op_assign!(impl MulAssign<$t> for $f, mul_assign);
        define_op_assign!(impl DivAssign<$t> for $f, div_assign);
        define_op_assign!(impl RemAssign<$t> for $f, rem_assign);
    )*)
}

define_from!( Nat, usize u8 u16 u32 u64 u128 );
define_from!( Int, usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 );

define_eq!( Nat, usize u8 u16 u32 u64 u128 );
define_eq!( Int, usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 );

define_ops!( Nat, usize u8 u16 u32 u64 u128 );
define_ops!( Int, usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 );

// Need a separate macro to extract the Big[U]Int from the Nat/Int struct.
macro_rules! define_op_0 {
    (impl $imp: ident < $scalar: ty > for $res: ty, $method: ident) => {
        impl $imp<$scalar> for $res {
            type Output = $res;

            #[inline]
            fn $method(self, other: $scalar) -> $res {
                $imp::$method(self.0, &other.0).into()
            }
        }
    };
}

macro_rules! define_op_0_assign {
    (impl $imp: ident < $scalar: ty > for $res: ty, $method: ident) => {
        // Implement A * B
        impl $imp<$scalar> for $res {
            #[inline]
            fn $method(&mut self, other: $scalar) {
                $imp::$method(&mut self.0, other.0)
            }
        }
    };
}

define_op_0!(impl Add<Nat> for Nat, add);
define_op_0!(impl Sub<Nat> for Nat, sub);
define_op_0!(impl Mul<Nat> for Nat, mul);
define_op_0!(impl Div<Nat> for Nat, div);
define_op_0!(impl Rem<Nat> for Nat, rem);

define_op_0_assign!(impl AddAssign<Nat> for Nat, add_assign);
define_op_0_assign!(impl SubAssign<Nat> for Nat, sub_assign);
define_op_0_assign!(impl MulAssign<Nat> for Nat, mul_assign);
define_op_0_assign!(impl DivAssign<Nat> for Nat, div_assign);
define_op_0_assign!(impl RemAssign<Nat> for Nat, rem_assign);

define_op_0!(impl Add<Int> for Int, add);
define_op_0!(impl Sub<Int> for Int, sub);
define_op_0!(impl Mul<Int> for Int, mul);
define_op_0!(impl Div<Int> for Int, div);
define_op_0!(impl Rem<Int> for Int, rem);

define_op_0_assign!(impl AddAssign<Int> for Int, add_assign);
define_op_0_assign!(impl SubAssign<Int> for Int, sub_assign);
define_op_0_assign!(impl MulAssign<Int> for Int, mul_assign);
define_op_0_assign!(impl DivAssign<Int> for Int, div_assign);
define_op_0_assign!(impl RemAssign<Int> for Int, rem_assign);

#[cfg(test)]
mod tests {
    use super::*;
    use serde::Deserialize;

    #[derive(Default, Debug, Clone, Deserialize, Serialize, PartialEq, Eq)]
    pub struct TestStruct {
        inner: Nat,
    }

    #[ignore]
    #[test]
    fn test_serde_with_bincode() {
        // This ignored/failed test shows that bincode isn't supported.
        let test_struct = TestStruct {
            inner: Nat::from(1000u64),
        };
        let serialized = bincode::serialize(&test_struct).unwrap();
        // panicked at 'called `Result::unwrap()` on an `Err` value: DeserializeAnyNotSupported'
        let deserialized = bincode::deserialize(&serialized).unwrap();
        assert_eq!(test_struct, deserialized);
    }

    #[test]
    fn test_serde_with_json() {
        let test_struct = TestStruct {
            inner: Nat::from(1000u64),
        };
        let serialized = serde_json::to_string(&test_struct).unwrap();
        let deserialized = serde_json::from_str(&serialized).unwrap();
        assert_eq!(test_struct, deserialized);

        // Nats serialize as arrays in JSON. The following tests the breakdown
        // of a big number into an array.
        // 13969838 * 2^32 + 2659581952 == 60000000000000000
        let test_struct = TestStruct {
            inner: Nat::parse(b"60000000000000000").unwrap(),
        };
        let serialized = serde_json::to_string(&test_struct).unwrap();
        assert_eq!(serialized, "{\"inner\":[2659581952,13969838]}");
        let deserialized = serde_json::from_str(&serialized).unwrap();
        assert_eq!(test_struct, deserialized);
    }

    #[test]
    fn test_serde_with_cbor() {
        let test_struct = TestStruct {
            inner: Nat::from(1000u64),
        };
        let serialized = serde_cbor::to_vec(&test_struct).unwrap();
        let deserialized = serde_cbor::from_slice(&serialized).unwrap();
        assert_eq!(test_struct, deserialized);

        let test_struct = TestStruct {
            inner: Nat::parse(b"60000000000000000").unwrap(),
        };
        let serialized = serde_cbor::to_vec(&test_struct).unwrap();
        let deserialized = serde_cbor::from_slice(&serialized).unwrap();
        assert_eq!(test_struct, deserialized);
    }
}