ic_principal/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#[cfg(feature = "arbitrary")]
use arbitrary::{Arbitrary, Result as ArbitraryResult, Unstructured};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "self_authenticating")]
use sha2::{Digest, Sha224};
#[cfg(feature = "convert")]
use std::convert::TryFrom;
#[cfg(feature = "convert")]
use std::fmt::Write;
#[cfg(feature = "convert")]
use thiserror::Error;

/// An error happened while encoding, decoding or serializing a [`Principal`].
#[derive(Error, Clone, Debug, Eq, PartialEq)]
#[cfg(feature = "convert")]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PrincipalError {
    #[error("Bytes is longer than 29 bytes.")]
    BytesTooLong(),

    #[error("Text must be in valid Base32 encoding.")]
    InvalidBase32(),

    #[error("Text is too short.")]
    TextTooShort(),

    #[error("Text is too long.")]
    TextTooLong(),

    #[error("CRC32 check sequence doesn't match with calculated from Principal bytes.")]
    CheckSequenceNotMatch(),

    #[error(r#"Text should be separated by - (dash) every 5 characters: expected "{0}""#)]
    AbnormalGrouped(Principal),
}

/// Generic ID on Internet Computer.
///
/// Principals are generic identifiers for canisters, users
/// and possibly other concepts in the future.
/// As far as most uses of the IC are concerned they are
/// opaque binary blobs with a length between 0 and 29 bytes,
/// and there is intentionally no mechanism to tell canister ids and user ids apart.
///
/// Note a principal is not necessarily tied with a public key-pair,
/// yet we need at least a key-pair of a related principal to sign
/// requests.
///
/// A Principal can be serialized to a byte array ([`Vec<u8>`]) or a text
/// representation, but the inner structure of the byte representation
/// is kept private.
///
/// Example of using a Principal object:
/// ```
/// # #[cfg(feature = "convert")] {
/// use ic_principal::Principal;
///
/// let text = "aaaaa-aa";  // The management canister ID.
/// let principal = Principal::from_text(text).expect("Could not decode the principal.");
/// assert_eq!(principal.as_slice(), &[]);
/// assert_eq!(principal.to_text(), text);
///
/// # }
/// ```
///
/// Serialization is enabled with the "serde" feature. It supports serializing
/// to a byte bufer for non-human readable serializer, and a string version for human
/// readable serializers.
///
/// ```
/// # #[cfg(all(feature = "convert", feature = "serde"))] {
/// use ic_principal::Principal;
/// use serde::{Deserialize, Serialize};
/// use std::str::FromStr;
///
/// #[derive(Serialize)]
/// struct Data {
///     id: Principal,
/// }
///
/// let id = Principal::from_str("2chl6-4hpzw-vqaaa-aaaaa-c").unwrap();
///
/// // JSON is human readable, so this will serialize to a textual
/// // representation of the Principal.
/// assert_eq!(
///     serde_json::to_string(&Data { id: id.clone() }).unwrap(),
///     r#"{"id":"2chl6-4hpzw-vqaaa-aaaaa-c"}"#
/// );
///
/// // CBOR is not human readable, so will serialize to bytes.
/// assert_eq!(
///     serde_cbor::to_vec(&Data { id: id.clone() }).unwrap(),
///     &[161, 98, 105, 100, 73, 239, 205, 171, 0, 0, 0, 0, 0, 1],
/// );
/// # }
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Principal {
    /// Length.
    len: u8,

    /// The content buffer. When returning slices this should always be sized according to
    /// `len`.
    bytes: [u8; Self::MAX_LENGTH_IN_BYTES],
}

impl Principal {
    pub const MAX_LENGTH_IN_BYTES: usize = 29;
    #[allow(dead_code)]
    const CRC_LENGTH_IN_BYTES: usize = 4;

    #[allow(dead_code)]
    const SELF_AUTHENTICATING_TAG: u8 = 2;
    const ANONYMOUS_TAG: u8 = 4;

    /// Construct a [`Principal`] of the IC management canister
    pub const fn management_canister() -> Self {
        Self {
            len: 0,
            bytes: [0; Self::MAX_LENGTH_IN_BYTES],
        }
    }

    /// Construct a self-authenticating ID from public key
    #[cfg(feature = "self_authenticating")]
    pub fn self_authenticating<P: AsRef<[u8]>>(public_key: P) -> Self {
        let public_key = public_key.as_ref();
        let hash = Sha224::digest(public_key);
        let mut bytes = [0; Self::MAX_LENGTH_IN_BYTES];
        bytes[..Self::MAX_LENGTH_IN_BYTES - 1].copy_from_slice(hash.as_slice());
        bytes[Self::MAX_LENGTH_IN_BYTES - 1] = Self::SELF_AUTHENTICATING_TAG;

        Self {
            len: Self::MAX_LENGTH_IN_BYTES as u8,
            bytes,
        }
    }

    /// Construct an anonymous ID.
    pub const fn anonymous() -> Self {
        let mut bytes = [0; Self::MAX_LENGTH_IN_BYTES];
        bytes[0] = Self::ANONYMOUS_TAG;
        Self { len: 1, bytes }
    }

    /// Returns `None` if the slice exceeds the max length.
    const fn from_slice_core(slice: &[u8]) -> Option<Self> {
        match slice.len() {
            len @ 0..=Self::MAX_LENGTH_IN_BYTES => {
                let mut bytes = [0; Self::MAX_LENGTH_IN_BYTES];
                let mut i = 0;
                while i < len {
                    bytes[i] = slice[i];
                    i += 1;
                }
                Some(Self {
                    len: len as u8,
                    bytes,
                })
            }
            _ => None,
        }
    }

    /// Construct a [`Principal`] from a slice of bytes.
    ///
    /// # Panics
    ///
    /// Panics if the slice is longer than 29 bytes.
    pub const fn from_slice(slice: &[u8]) -> Self {
        match Self::from_slice_core(slice) {
            Some(principal) => principal,
            _ => panic!("slice length exceeds capacity"),
        }
    }

    /// Construct a [`Principal`] from a slice of bytes.
    #[cfg(feature = "convert")]
    pub const fn try_from_slice(slice: &[u8]) -> Result<Self, PrincipalError> {
        match Self::from_slice_core(slice) {
            Some(principal) => Ok(principal),
            None => Err(PrincipalError::BytesTooLong()),
        }
    }

    /// Parse a [`Principal`] from text representation.
    #[cfg(feature = "convert")]
    pub fn from_text<S: AsRef<str>>(text: S) -> Result<Self, PrincipalError> {
        // Strategy: Parse very liberally, then pretty-print and compare output
        // This is both simpler and yields better error messages

        let mut s = text.as_ref().to_string();
        s.make_ascii_uppercase();
        s.retain(|c| c != '-');
        match data_encoding::BASE32_NOPAD.decode(s.as_bytes()) {
            Ok(bytes) => {
                if bytes.len() < Self::CRC_LENGTH_IN_BYTES {
                    return Err(PrincipalError::TextTooShort());
                }

                let crc_bytes = &bytes[..Self::CRC_LENGTH_IN_BYTES];
                let data_bytes = &bytes[Self::CRC_LENGTH_IN_BYTES..];
                if data_bytes.len() > Self::MAX_LENGTH_IN_BYTES {
                    return Err(PrincipalError::TextTooLong());
                }

                if crc32fast::hash(data_bytes).to_be_bytes() != crc_bytes {
                    return Err(PrincipalError::CheckSequenceNotMatch());
                }

                // Already checked data_bytes.len() <= MAX_LENGTH_IN_BYTES
                // safe to unwrap here
                let result = Self::try_from_slice(data_bytes).unwrap();
                let expected = format!("{result}");

                // In the Spec:
                // The textual representation is conventionally printed with lower case letters,
                // but parsed case-insensitively.
                if text.as_ref().to_ascii_lowercase() != expected {
                    return Err(PrincipalError::AbnormalGrouped(result));
                }
                Ok(result)
            }
            _ => Err(PrincipalError::InvalidBase32()),
        }
    }

    /// Convert [`Principal`] to text representation.
    #[cfg(feature = "convert")]
    pub fn to_text(&self) -> String {
        format!("{self}")
    }

    /// Return the [`Principal`]'s underlying slice of bytes.
    #[inline]
    pub fn as_slice(&self) -> &[u8] {
        &self.bytes[..self.len as usize]
    }
}

#[cfg(feature = "convert")]
impl std::fmt::Display for Principal {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let blob: &[u8] = self.as_slice();

        // calc checksum
        let checksum = crc32fast::hash(blob);

        // combine blobs
        let mut bytes = vec![];
        bytes.extend_from_slice(&checksum.to_be_bytes());
        bytes.extend_from_slice(blob);

        // base32
        let mut s = data_encoding::BASE32_NOPAD.encode(&bytes);
        s.make_ascii_lowercase();

        // write out string with dashes
        let mut s = s.as_str();
        while s.len() > 5 {
            f.write_str(&s[..5])?;
            f.write_char('-')?;
            s = &s[5..];
        }
        f.write_str(s)
    }
}

#[cfg(feature = "convert")]
impl std::str::FromStr for Principal {
    type Err = PrincipalError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Principal::from_text(s)
    }
}

#[cfg(feature = "convert")]
impl TryFrom<&str> for Principal {
    type Error = PrincipalError;

    fn try_from(s: &str) -> Result<Self, Self::Error> {
        Principal::from_text(s)
    }
}

#[cfg(feature = "convert")]
impl TryFrom<Vec<u8>> for Principal {
    type Error = PrincipalError;

    fn try_from(bytes: Vec<u8>) -> Result<Self, Self::Error> {
        Self::try_from(bytes.as_slice())
    }
}

#[cfg(feature = "convert")]
impl TryFrom<&Vec<u8>> for Principal {
    type Error = PrincipalError;

    fn try_from(bytes: &Vec<u8>) -> Result<Self, Self::Error> {
        Self::try_from(bytes.as_slice())
    }
}

#[cfg(feature = "convert")]
impl TryFrom<&[u8]> for Principal {
    type Error = PrincipalError;

    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        Self::try_from_slice(bytes)
    }
}

impl AsRef<[u8]> for Principal {
    fn as_ref(&self) -> &[u8] {
        self.as_slice()
    }
}

// Serialization
#[cfg(feature = "serde")]
impl serde::Serialize for Principal {
    fn serialize<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        if serializer.is_human_readable() {
            self.to_text().serialize(serializer)
        } else {
            serializer.serialize_bytes(self.as_slice())
        }
    }
}

// Deserialization
#[cfg(feature = "serde")]
mod deserialize {
    use super::Principal;
    use std::convert::TryFrom;

    // Simple visitor for deserialization from bytes. We don't support other number types
    // as there's no need for it.
    pub(super) struct PrincipalVisitor;

    impl<'de> serde::de::Visitor<'de> for PrincipalVisitor {
        type Value = super::Principal;

        fn expecting(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            formatter.write_str("bytes or string")
        }

        fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
        where
            E: serde::de::Error,
        {
            Principal::from_text(v).map_err(E::custom)
        }

        fn visit_bytes<E>(self, value: &[u8]) -> Result<Self::Value, E>
        where
            E: serde::de::Error,
        {
            Principal::try_from(value).map_err(E::custom)
        }
        /// This visitor should only be used by the Candid crate.
        fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
        where
            E: serde::de::Error,
        {
            if v.is_empty() || v[0] != 2u8 {
                Err(E::custom("Not called by Candid"))
            } else {
                Principal::try_from(&v[1..]).map_err(E::custom)
            }
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Principal {
    fn deserialize<D: serde::Deserializer<'de>>(deserializer: D) -> Result<Principal, D::Error> {
        use serde::de::Error;
        if deserializer.is_human_readable() {
            deserializer
                .deserialize_str(deserialize::PrincipalVisitor)
                .map_err(D::Error::custom)
        } else {
            deserializer
                .deserialize_bytes(deserialize::PrincipalVisitor)
                .map_err(D::Error::custom)
        }
    }
}

#[cfg(feature = "arbitrary")]
impl<'a> Arbitrary<'a> for Principal {
    fn arbitrary(u: &mut Unstructured<'a>) -> ArbitraryResult<Self> {
        let principal = match u8::arbitrary(u)? {
            u8::MAX => Principal::management_canister(),
            254u8 => Principal::anonymous(),
            _ => {
                let length: usize = u.int_in_range(1..=Principal::MAX_LENGTH_IN_BYTES)?;
                let mut result: Vec<u8> = Vec::with_capacity(length);
                for _ in 0..length {
                    result.push(u8::arbitrary(u)?);
                }
                // non-anonymous principal cannot have type ANONYMOUS
                // adapt by changing the last byte.
                let last = result.last_mut().unwrap();
                if *last == 4_u8 {
                    *last = u8::MAX;
                }
                Principal::try_from(&result[..]).unwrap()
            }
        };
        Ok(principal)
    }
}