pem_rfc7468/encoder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
//! PEM encoder.
use crate::{
grammar, Base64Encoder, Error, LineEnding, Result, BASE64_WRAP_WIDTH,
ENCAPSULATION_BOUNDARY_DELIMITER, POST_ENCAPSULATION_BOUNDARY, PRE_ENCAPSULATION_BOUNDARY,
};
use base64ct::{Base64, Encoding};
use core::str;
#[cfg(feature = "alloc")]
use alloc::string::String;
#[cfg(feature = "std")]
use std::io;
/// Compute the length of a PEM encoded document which encapsulates a
/// Base64-encoded body including line endings every 64 characters.
///
/// The `input_len` parameter specifies the length of the raw input
/// bytes prior to Base64 encoding.
///
/// Note that the current implementation of this function computes an upper
/// bound of the length and the actual encoded document may be slightly shorter
/// (typically 1-byte). Downstream consumers of this function should check the
/// actual encoded length and potentially truncate buffers allocated using this
/// function to estimate the encapsulated size.
///
/// Use [`encoded_len`] (when possible) to obtain a precise length.
///
/// ## Returns
/// - `Ok(len)` on success
/// - `Err(Error::Length)` on length overflow
pub fn encapsulated_len(label: &str, line_ending: LineEnding, input_len: usize) -> Result<usize> {
encapsulated_len_wrapped(label, BASE64_WRAP_WIDTH, line_ending, input_len)
}
/// Compute the length of a PEM encoded document with the Base64 body
/// line wrapped at the specified `width`.
///
/// This is the same as [`encapsulated_len`], which defaults to a width of 64.
///
/// Note that per [RFC7468 § 2] encoding PEM with any other wrap width besides
/// 64 is technically non-compliant:
///
/// > Generators MUST wrap the base64-encoded lines so that each line
/// > consists of exactly 64 characters except for the final line, which
/// > will encode the remainder of the data (within the 64-character line
/// > boundary)
///
/// [RFC7468 § 2]: https://datatracker.ietf.org/doc/html/rfc7468#section-2
pub fn encapsulated_len_wrapped(
label: &str,
line_width: usize,
line_ending: LineEnding,
input_len: usize,
) -> Result<usize> {
if line_width < 4 {
return Err(Error::Length);
}
let base64_len = input_len
.checked_mul(4)
.and_then(|n| n.checked_div(3))
.and_then(|n| n.checked_add(3))
.ok_or(Error::Length)?
& !3;
let base64_len_wrapped = base64_len_wrapped(base64_len, line_width, line_ending)?;
encapsulated_len_inner(label, line_ending, base64_len_wrapped)
}
/// Get the length of a PEM encoded document with the given bytes and label.
///
/// This function computes a precise length of the PEM encoding of the given
/// `input` data.
///
/// ## Returns
/// - `Ok(len)` on success
/// - `Err(Error::Length)` on length overflow
pub fn encoded_len(label: &str, line_ending: LineEnding, input: &[u8]) -> Result<usize> {
let base64_len = Base64::encoded_len(input);
let base64_len_wrapped = base64_len_wrapped(base64_len, BASE64_WRAP_WIDTH, line_ending)?;
encapsulated_len_inner(label, line_ending, base64_len_wrapped)
}
/// Encode a PEM document according to RFC 7468's "Strict" grammar.
pub fn encode<'o>(
type_label: &str,
line_ending: LineEnding,
input: &[u8],
buf: &'o mut [u8],
) -> Result<&'o str> {
let mut encoder = Encoder::new(type_label, line_ending, buf)?;
encoder.encode(input)?;
let encoded_len = encoder.finish()?;
let output = &buf[..encoded_len];
// Sanity check
debug_assert!(str::from_utf8(output).is_ok());
// Ensure `output` contains characters from the lower 7-bit ASCII set
if output.iter().fold(0u8, |acc, &byte| acc | (byte & 0x80)) == 0 {
// Use unchecked conversion to avoid applying UTF-8 checks to potentially
// secret PEM documents (and therefore introducing a potential timing
// sidechannel)
//
// SAFETY: contents of this buffer are controlled entirely by the encoder,
// which ensures the contents are always a valid (ASCII) subset of UTF-8.
// It's also additionally sanity checked by two assertions above to ensure
// the validity (with the always-on runtime check implemented in a
// constant time-ish manner.
#[allow(unsafe_code)]
Ok(unsafe { str::from_utf8_unchecked(output) })
} else {
Err(Error::CharacterEncoding)
}
}
/// Encode a PEM document according to RFC 7468's "Strict" grammar, returning
/// the result as a [`String`].
#[cfg(feature = "alloc")]
pub fn encode_string(label: &str, line_ending: LineEnding, input: &[u8]) -> Result<String> {
let expected_len = encoded_len(label, line_ending, input)?;
let mut buf = vec![0u8; expected_len];
let actual_len = encode(label, line_ending, input, &mut buf)?.len();
debug_assert_eq!(expected_len, actual_len);
String::from_utf8(buf).map_err(|_| Error::CharacterEncoding)
}
/// Compute the encapsulated length of Base64 data of the given length.
fn encapsulated_len_inner(
label: &str,
line_ending: LineEnding,
base64_len: usize,
) -> Result<usize> {
[
PRE_ENCAPSULATION_BOUNDARY.len(),
label.as_bytes().len(),
ENCAPSULATION_BOUNDARY_DELIMITER.len(),
line_ending.len(),
base64_len,
line_ending.len(),
POST_ENCAPSULATION_BOUNDARY.len(),
label.as_bytes().len(),
ENCAPSULATION_BOUNDARY_DELIMITER.len(),
line_ending.len(),
]
.into_iter()
.try_fold(0usize, |acc, len| acc.checked_add(len))
.ok_or(Error::Length)
}
/// Compute Base64 length line-wrapped at the specified width with the given
/// line ending.
fn base64_len_wrapped(
base64_len: usize,
line_width: usize,
line_ending: LineEnding,
) -> Result<usize> {
base64_len
.saturating_sub(1)
.checked_div(line_width)
.and_then(|lines| lines.checked_mul(line_ending.len()))
.and_then(|len| len.checked_add(base64_len))
.ok_or(Error::Length)
}
/// Buffered PEM encoder.
///
/// Stateful buffered encoder type which encodes an input PEM document according
/// to RFC 7468's "Strict" grammar.
pub struct Encoder<'l, 'o> {
/// PEM type label.
type_label: &'l str,
/// Line ending used to wrap Base64.
line_ending: LineEnding,
/// Buffered Base64 encoder.
base64: Base64Encoder<'o>,
}
impl<'l, 'o> Encoder<'l, 'o> {
/// Create a new PEM [`Encoder`] with the default options which
/// writes output into the provided buffer.
///
/// Uses the default 64-character line wrapping.
pub fn new(type_label: &'l str, line_ending: LineEnding, out: &'o mut [u8]) -> Result<Self> {
Self::new_wrapped(type_label, BASE64_WRAP_WIDTH, line_ending, out)
}
/// Create a new PEM [`Encoder`] which wraps at the given line width.
///
/// Note that per [RFC7468 § 2] encoding PEM with any other wrap width besides
/// 64 is technically non-compliant:
///
/// > Generators MUST wrap the base64-encoded lines so that each line
/// > consists of exactly 64 characters except for the final line, which
/// > will encode the remainder of the data (within the 64-character line
/// > boundary)
///
/// This method is provided with the intended purpose of implementing the
/// OpenSSH private key format, which uses a non-standard wrap width of 70.
///
/// [RFC7468 § 2]: https://datatracker.ietf.org/doc/html/rfc7468#section-2
pub fn new_wrapped(
type_label: &'l str,
line_width: usize,
line_ending: LineEnding,
mut out: &'o mut [u8],
) -> Result<Self> {
grammar::validate_label(type_label.as_bytes())?;
for boundary_part in [
PRE_ENCAPSULATION_BOUNDARY,
type_label.as_bytes(),
ENCAPSULATION_BOUNDARY_DELIMITER,
line_ending.as_bytes(),
] {
if out.len() < boundary_part.len() {
return Err(Error::Length);
}
let (part, rest) = out.split_at_mut(boundary_part.len());
out = rest;
part.copy_from_slice(boundary_part);
}
let base64 = Base64Encoder::new_wrapped(out, line_width, line_ending)?;
Ok(Self {
type_label,
line_ending,
base64,
})
}
/// Get the PEM type label used for this document.
pub fn type_label(&self) -> &'l str {
self.type_label
}
/// Encode the provided input data.
///
/// This method can be called as many times as needed with any sized input
/// to write data encoded data into the output buffer, so long as there is
/// sufficient space in the buffer to handle the resulting Base64 encoded
/// data.
pub fn encode(&mut self, input: &[u8]) -> Result<()> {
self.base64.encode(input)?;
Ok(())
}
/// Borrow the inner [`Base64Encoder`].
pub fn base64_encoder(&mut self) -> &mut Base64Encoder<'o> {
&mut self.base64
}
/// Finish encoding PEM, writing the post-encapsulation boundary.
///
/// On success, returns the total number of bytes written to the output
/// buffer.
pub fn finish(self) -> Result<usize> {
let (base64, mut out) = self.base64.finish_with_remaining()?;
for boundary_part in [
self.line_ending.as_bytes(),
POST_ENCAPSULATION_BOUNDARY,
self.type_label.as_bytes(),
ENCAPSULATION_BOUNDARY_DELIMITER,
self.line_ending.as_bytes(),
] {
if out.len() < boundary_part.len() {
return Err(Error::Length);
}
let (part, rest) = out.split_at_mut(boundary_part.len());
out = rest;
part.copy_from_slice(boundary_part);
}
encapsulated_len_inner(self.type_label, self.line_ending, base64.len())
}
}
#[cfg(feature = "std")]
impl<'l, 'o> io::Write for Encoder<'l, 'o> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.encode(buf)?;
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
// TODO(tarcieri): return an error if there's still data remaining in the buffer?
Ok(())
}
}