primeorder/
point_arithmetic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
//! Point arithmetic implementation optimised for different curve equations
//!
//! Support for formulas specialized to the short Weierstrass equation's
//! 𝒂-coefficient.

use elliptic_curve::{subtle::ConditionallySelectable, Field};

use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint};

mod sealed {
    use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint};

    /// Elliptic point arithmetic implementation
    ///
    /// Provides implementation of point arithmetic (point addition, point doubling) which
    /// might be optimized for the curve.
    pub trait PointArithmetic<C: PrimeCurveParams> {
        /// Returns `lhs + rhs`
        fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C>;

        /// Returns `lhs + rhs`
        fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C>;

        /// Returns `point + point`
        fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C>;
    }
}

/// Allow crate-local visibility
pub(crate) use sealed::PointArithmetic;

/// The 𝒂-coefficient of the short Weierstrass equation does not have specific
/// properties which allow for an optimized implementation.
pub struct EquationAIsGeneric {}

impl<C: PrimeCurveParams> PointArithmetic<C> for EquationAIsGeneric {
    /// Implements complete addition for any curve
    ///
    /// Implements the complete addition formula from [Renes-Costello-Batina 2015]
    /// (Algorithm 1). The comments after each line indicate which algorithm steps
    /// are being performed.
    ///
    /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
    fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C> {
        let b3 = C::FieldElement::from(3) * C::EQUATION_B;

        let t0 = lhs.x * rhs.x; // 1
        let t1 = lhs.y * rhs.y; // 2
        let t2 = lhs.z * rhs.z; // 3
        let t3 = lhs.x + lhs.y; // 4
        let t4 = rhs.x + rhs.y; // 5
        let t3 = t3 * t4; // 6
        let t4 = t0 + t1; // 7
        let t3 = t3 - t4; // 8
        let t4 = lhs.x + lhs.z; // 9
        let t5 = rhs.x + rhs.z; // 10
        let t4 = t4 * t5; // 11
        let t5 = t0 + t2; // 12
        let t4 = t4 - t5; // 13
        let t5 = lhs.y + lhs.z; // 14
        let x3 = rhs.y + rhs.z; // 15
        let t5 = t5 * x3; // 16
        let x3 = t1 + t2; // 17
        let t5 = t5 - x3; // 18
        let z3 = C::EQUATION_A * t4; // 19
        let x3 = b3 * t2; // 20
        let z3 = x3 + z3; // 21
        let x3 = t1 - z3; // 22
        let z3 = t1 + z3; // 23
        let y3 = x3 * z3; // 24
        let t1 = t0 + t0; // 25
        let t1 = t1 + t0; // 26
        let t2 = C::EQUATION_A * t2; // 27
        let t4 = b3 * t4; // 28
        let t1 = t1 + t2; // 29
        let t2 = t0 - t2; // 30
        let t2 = C::EQUATION_A * t2; // 31
        let t4 = t4 + t2; // 32
        let t0 = t1 * t4; // 33
        let y3 = y3 + t0; // 34
        let t0 = t5 * t4; // 35
        let x3 = t3 * x3; // 36
        let x3 = x3 - t0; // 37
        let t0 = t3 * t1; // 38
        let z3 = t5 * z3; // 39
        let z3 = z3 + t0; // 40

        ProjectivePoint {
            x: x3,
            y: y3,
            z: z3,
        }
    }

    /// Implements complete mixed addition for curves with any `a`
    ///
    /// Implements the complete mixed addition formula from [Renes-Costello-Batina 2015]
    /// (Algorithm 2). The comments after each line indicate which algorithm
    /// steps are being performed.
    ///
    /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
    fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C> {
        let b3 = C::EQUATION_B * C::FieldElement::from(3);

        let t0 = lhs.x * rhs.x; // 1
        let t1 = lhs.y * rhs.y; // 2
        let t3 = rhs.x + rhs.y; // 3
        let t4 = lhs.x + lhs.y; // 4
        let t3 = t3 * t4; // 5
        let t4 = t0 + t1; // 6
        let t3 = t3 - t4; // 7
        let t4 = rhs.x * lhs.z; // 8
        let t4 = t4 + lhs.x; // 9
        let t5 = rhs.y * lhs.z; // 10
        let t5 = t5 + lhs.y; // 11
        let z3 = C::EQUATION_A * t4; // 12
        let x3 = b3 * lhs.z; // 13
        let z3 = x3 + z3; // 14
        let x3 = t1 - z3; // 15
        let z3 = t1 + z3; // 16
        let y3 = x3 * z3; // 17
        let t1 = t0 + t0; // 18
        let t1 = t1 + t0; // 19
        let t2 = C::EQUATION_A * lhs.z; // 20
        let t4 = b3 * t4; // 21
        let t1 = t1 + t2; // 22
        let t2 = t0 - t2; // 23
        let t2 = C::EQUATION_A * t2; // 24
        let t4 = t4 + t2; // 25
        let t0 = t1 * t4; // 26
        let y3 = y3 + t0; // 27
        let t0 = t5 * t4; // 28
        let x3 = t3 * x3; // 29
        let x3 = x3 - t0; // 30
        let t0 = t3 * t1; // 31
        let z3 = t5 * z3; // 32
        let z3 = z3 + t0; // 33

        let mut ret = ProjectivePoint {
            x: x3,
            y: y3,
            z: z3,
        };
        ret.conditional_assign(lhs, rhs.is_identity());
        ret
    }

    /// Implements point doubling for curves with any `a`
    ///
    /// Implements the exception-free point doubling formula from [Renes-Costello-Batina 2015]
    /// (Algorithm 3). The comments after each line indicate which algorithm
    /// steps are being performed.
    ///
    /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
    fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C> {
        let b3 = C::EQUATION_B * C::FieldElement::from(3);

        let t0 = point.x * point.x; // 1
        let t1 = point.y * point.y; // 2
        let t2 = point.z * point.z; // 3
        let t3 = point.x * point.y; // 4
        let t3 = t3 + t3; // 5
        let z3 = point.x * point.z; // 6
        let z3 = z3 + z3; // 7
        let x3 = C::EQUATION_A * z3; // 8
        let y3 = b3 * t2; // 9
        let y3 = x3 + y3; // 10
        let x3 = t1 - y3; // 11
        let y3 = t1 + y3; // 12
        let y3 = x3 * y3; // 13
        let x3 = t3 * x3; // 14
        let z3 = b3 * z3; // 15
        let t2 = C::EQUATION_A * t2; // 16
        let t3 = t0 - t2; // 17
        let t3 = C::EQUATION_A * t3; // 18
        let t3 = t3 + z3; // 19
        let z3 = t0 + t0; // 20
        let t0 = z3 + t0; // 21
        let t0 = t0 + t2; // 22
        let t0 = t0 * t3; // 23
        let y3 = y3 + t0; // 24
        let t2 = point.y * point.z; // 25
        let t2 = t2 + t2; // 26
        let t0 = t2 * t3; // 27
        let x3 = x3 - t0; // 28
        let z3 = t2 * t1; // 29
        let z3 = z3 + z3; // 30
        let z3 = z3 + z3; // 31

        ProjectivePoint {
            x: x3,
            y: y3,
            z: z3,
        }
    }
}

/// The 𝒂-coefficient of the short Weierstrass equation is -3.
pub struct EquationAIsMinusThree {}

impl<C: PrimeCurveParams> PointArithmetic<C> for EquationAIsMinusThree {
    /// Implements complete addition for curves with `a = -3`
    ///
    /// Implements the complete addition formula from [Renes-Costello-Batina 2015]
    /// (Algorithm 4). The comments after each line indicate which algorithm steps
    /// are being performed.
    ///
    /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
    fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C> {
        debug_assert_eq!(
            C::EQUATION_A,
            -C::FieldElement::from(3),
            "this implementation is only valid for C::EQUATION_A = -3"
        );

        let xx = lhs.x * rhs.x; // 1
        let yy = lhs.y * rhs.y; // 2
        let zz = lhs.z * rhs.z; // 3
        let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); // 4, 5, 6, 7, 8
        let yz_pairs = ((lhs.y + lhs.z) * (rhs.y + rhs.z)) - (yy + zz); // 9, 10, 11, 12, 13
        let xz_pairs = ((lhs.x + lhs.z) * (rhs.x + rhs.z)) - (xx + zz); // 14, 15, 16, 17, 18

        let bzz_part = xz_pairs - (C::EQUATION_B * zz); // 19, 20
        let bzz3_part = bzz_part.double() + bzz_part; // 21, 22
        let yy_m_bzz3 = yy - bzz3_part; // 23
        let yy_p_bzz3 = yy + bzz3_part; // 24

        let zz3 = zz.double() + zz; // 26, 27
        let bxz_part = (C::EQUATION_B * xz_pairs) - (zz3 + xx); // 25, 28, 29
        let bxz3_part = bxz_part.double() + bxz_part; // 30, 31
        let xx3_m_zz3 = xx.double() + xx - zz3; // 32, 33, 34

        ProjectivePoint {
            x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), // 35, 39, 40
            y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), // 36, 37, 38
            z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), // 41, 42, 43
        }
    }

    /// Implements complete mixed addition for curves with `a = -3`
    ///
    /// Implements the complete mixed addition formula from [Renes-Costello-Batina 2015]
    /// (Algorithm 5). The comments after each line indicate which algorithm
    /// steps are being performed.
    ///
    /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
    fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C> {
        debug_assert_eq!(
            C::EQUATION_A,
            -C::FieldElement::from(3),
            "this implementation is only valid for C::EQUATION_A = -3"
        );

        let xx = lhs.x * rhs.x; // 1
        let yy = lhs.y * rhs.y; // 2
        let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); // 3, 4, 5, 6, 7
        let yz_pairs = (rhs.y * lhs.z) + lhs.y; // 8, 9 (t4)
        let xz_pairs = (rhs.x * lhs.z) + lhs.x; // 10, 11 (y3)

        let bz_part = xz_pairs - (C::EQUATION_B * lhs.z); // 12, 13
        let bz3_part = bz_part.double() + bz_part; // 14, 15
        let yy_m_bzz3 = yy - bz3_part; // 16
        let yy_p_bzz3 = yy + bz3_part; // 17

        let z3 = lhs.z.double() + lhs.z; // 19, 20
        let bxz_part = (C::EQUATION_B * xz_pairs) - (z3 + xx); // 18, 21, 22
        let bxz3_part = bxz_part.double() + bxz_part; // 23, 24
        let xx3_m_zz3 = xx.double() + xx - z3; // 25, 26, 27

        let mut ret = ProjectivePoint {
            x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), // 28, 32, 33
            y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), // 29, 30, 31
            z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), // 34, 35, 36
        };
        ret.conditional_assign(lhs, rhs.is_identity());
        ret
    }

    /// Implements point doubling for curves with `a = -3`
    ///
    /// Implements the exception-free point doubling formula from [Renes-Costello-Batina 2015]
    /// (Algorithm 6). The comments after each line indicate which algorithm
    /// steps are being performed.
    ///
    /// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
    fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C> {
        debug_assert_eq!(
            C::EQUATION_A,
            -C::FieldElement::from(3),
            "this implementation is only valid for C::EQUATION_A = -3"
        );

        let xx = point.x.square(); // 1
        let yy = point.y.square(); // 2
        let zz = point.z.square(); // 3
        let xy2 = (point.x * point.y).double(); // 4, 5
        let xz2 = (point.x * point.z).double(); // 6, 7

        let bzz_part = (C::EQUATION_B * zz) - xz2; // 8, 9
        let bzz3_part = bzz_part.double() + bzz_part; // 10, 11
        let yy_m_bzz3 = yy - bzz3_part; // 12
        let yy_p_bzz3 = yy + bzz3_part; // 13
        let y_frag = yy_p_bzz3 * yy_m_bzz3; // 14
        let x_frag = yy_m_bzz3 * xy2; // 15

        let zz3 = zz.double() + zz; // 16, 17
        let bxz2_part = (C::EQUATION_B * xz2) - (zz3 + xx); // 18, 19, 20
        let bxz6_part = bxz2_part.double() + bxz2_part; // 21, 22
        let xx3_m_zz3 = xx.double() + xx - zz3; // 23, 24, 25

        let y = y_frag + (xx3_m_zz3 * bxz6_part); // 26, 27
        let yz2 = (point.y * point.z).double(); // 28, 29
        let x = x_frag - (bxz6_part * yz2); // 30, 31
        let z = (yz2 * yy).double().double(); // 32, 33, 34

        ProjectivePoint { x, y, z }
    }
}