primeorder/point_arithmetic.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
//! Point arithmetic implementation optimised for different curve equations
//!
//! Support for formulas specialized to the short Weierstrass equation's
//! 𝒂-coefficient.
use elliptic_curve::{subtle::ConditionallySelectable, Field};
use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint};
mod sealed {
use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint};
/// Elliptic point arithmetic implementation
///
/// Provides implementation of point arithmetic (point addition, point doubling) which
/// might be optimized for the curve.
pub trait PointArithmetic<C: PrimeCurveParams> {
/// Returns `lhs + rhs`
fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C>;
/// Returns `lhs + rhs`
fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C>;
/// Returns `point + point`
fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C>;
}
}
/// Allow crate-local visibility
pub(crate) use sealed::PointArithmetic;
/// The 𝒂-coefficient of the short Weierstrass equation does not have specific
/// properties which allow for an optimized implementation.
pub struct EquationAIsGeneric {}
impl<C: PrimeCurveParams> PointArithmetic<C> for EquationAIsGeneric {
/// Implements complete addition for any curve
///
/// Implements the complete addition formula from [Renes-Costello-Batina 2015]
/// (Algorithm 1). The comments after each line indicate which algorithm steps
/// are being performed.
///
/// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C> {
let b3 = C::FieldElement::from(3) * C::EQUATION_B;
let t0 = lhs.x * rhs.x; // 1
let t1 = lhs.y * rhs.y; // 2
let t2 = lhs.z * rhs.z; // 3
let t3 = lhs.x + lhs.y; // 4
let t4 = rhs.x + rhs.y; // 5
let t3 = t3 * t4; // 6
let t4 = t0 + t1; // 7
let t3 = t3 - t4; // 8
let t4 = lhs.x + lhs.z; // 9
let t5 = rhs.x + rhs.z; // 10
let t4 = t4 * t5; // 11
let t5 = t0 + t2; // 12
let t4 = t4 - t5; // 13
let t5 = lhs.y + lhs.z; // 14
let x3 = rhs.y + rhs.z; // 15
let t5 = t5 * x3; // 16
let x3 = t1 + t2; // 17
let t5 = t5 - x3; // 18
let z3 = C::EQUATION_A * t4; // 19
let x3 = b3 * t2; // 20
let z3 = x3 + z3; // 21
let x3 = t1 - z3; // 22
let z3 = t1 + z3; // 23
let y3 = x3 * z3; // 24
let t1 = t0 + t0; // 25
let t1 = t1 + t0; // 26
let t2 = C::EQUATION_A * t2; // 27
let t4 = b3 * t4; // 28
let t1 = t1 + t2; // 29
let t2 = t0 - t2; // 30
let t2 = C::EQUATION_A * t2; // 31
let t4 = t4 + t2; // 32
let t0 = t1 * t4; // 33
let y3 = y3 + t0; // 34
let t0 = t5 * t4; // 35
let x3 = t3 * x3; // 36
let x3 = x3 - t0; // 37
let t0 = t3 * t1; // 38
let z3 = t5 * z3; // 39
let z3 = z3 + t0; // 40
ProjectivePoint {
x: x3,
y: y3,
z: z3,
}
}
/// Implements complete mixed addition for curves with any `a`
///
/// Implements the complete mixed addition formula from [Renes-Costello-Batina 2015]
/// (Algorithm 2). The comments after each line indicate which algorithm
/// steps are being performed.
///
/// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C> {
let b3 = C::EQUATION_B * C::FieldElement::from(3);
let t0 = lhs.x * rhs.x; // 1
let t1 = lhs.y * rhs.y; // 2
let t3 = rhs.x + rhs.y; // 3
let t4 = lhs.x + lhs.y; // 4
let t3 = t3 * t4; // 5
let t4 = t0 + t1; // 6
let t3 = t3 - t4; // 7
let t4 = rhs.x * lhs.z; // 8
let t4 = t4 + lhs.x; // 9
let t5 = rhs.y * lhs.z; // 10
let t5 = t5 + lhs.y; // 11
let z3 = C::EQUATION_A * t4; // 12
let x3 = b3 * lhs.z; // 13
let z3 = x3 + z3; // 14
let x3 = t1 - z3; // 15
let z3 = t1 + z3; // 16
let y3 = x3 * z3; // 17
let t1 = t0 + t0; // 18
let t1 = t1 + t0; // 19
let t2 = C::EQUATION_A * lhs.z; // 20
let t4 = b3 * t4; // 21
let t1 = t1 + t2; // 22
let t2 = t0 - t2; // 23
let t2 = C::EQUATION_A * t2; // 24
let t4 = t4 + t2; // 25
let t0 = t1 * t4; // 26
let y3 = y3 + t0; // 27
let t0 = t5 * t4; // 28
let x3 = t3 * x3; // 29
let x3 = x3 - t0; // 30
let t0 = t3 * t1; // 31
let z3 = t5 * z3; // 32
let z3 = z3 + t0; // 33
let mut ret = ProjectivePoint {
x: x3,
y: y3,
z: z3,
};
ret.conditional_assign(lhs, rhs.is_identity());
ret
}
/// Implements point doubling for curves with any `a`
///
/// Implements the exception-free point doubling formula from [Renes-Costello-Batina 2015]
/// (Algorithm 3). The comments after each line indicate which algorithm
/// steps are being performed.
///
/// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C> {
let b3 = C::EQUATION_B * C::FieldElement::from(3);
let t0 = point.x * point.x; // 1
let t1 = point.y * point.y; // 2
let t2 = point.z * point.z; // 3
let t3 = point.x * point.y; // 4
let t3 = t3 + t3; // 5
let z3 = point.x * point.z; // 6
let z3 = z3 + z3; // 7
let x3 = C::EQUATION_A * z3; // 8
let y3 = b3 * t2; // 9
let y3 = x3 + y3; // 10
let x3 = t1 - y3; // 11
let y3 = t1 + y3; // 12
let y3 = x3 * y3; // 13
let x3 = t3 * x3; // 14
let z3 = b3 * z3; // 15
let t2 = C::EQUATION_A * t2; // 16
let t3 = t0 - t2; // 17
let t3 = C::EQUATION_A * t3; // 18
let t3 = t3 + z3; // 19
let z3 = t0 + t0; // 20
let t0 = z3 + t0; // 21
let t0 = t0 + t2; // 22
let t0 = t0 * t3; // 23
let y3 = y3 + t0; // 24
let t2 = point.y * point.z; // 25
let t2 = t2 + t2; // 26
let t0 = t2 * t3; // 27
let x3 = x3 - t0; // 28
let z3 = t2 * t1; // 29
let z3 = z3 + z3; // 30
let z3 = z3 + z3; // 31
ProjectivePoint {
x: x3,
y: y3,
z: z3,
}
}
}
/// The 𝒂-coefficient of the short Weierstrass equation is -3.
pub struct EquationAIsMinusThree {}
impl<C: PrimeCurveParams> PointArithmetic<C> for EquationAIsMinusThree {
/// Implements complete addition for curves with `a = -3`
///
/// Implements the complete addition formula from [Renes-Costello-Batina 2015]
/// (Algorithm 4). The comments after each line indicate which algorithm steps
/// are being performed.
///
/// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C> {
debug_assert_eq!(
C::EQUATION_A,
-C::FieldElement::from(3),
"this implementation is only valid for C::EQUATION_A = -3"
);
let xx = lhs.x * rhs.x; // 1
let yy = lhs.y * rhs.y; // 2
let zz = lhs.z * rhs.z; // 3
let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); // 4, 5, 6, 7, 8
let yz_pairs = ((lhs.y + lhs.z) * (rhs.y + rhs.z)) - (yy + zz); // 9, 10, 11, 12, 13
let xz_pairs = ((lhs.x + lhs.z) * (rhs.x + rhs.z)) - (xx + zz); // 14, 15, 16, 17, 18
let bzz_part = xz_pairs - (C::EQUATION_B * zz); // 19, 20
let bzz3_part = bzz_part.double() + bzz_part; // 21, 22
let yy_m_bzz3 = yy - bzz3_part; // 23
let yy_p_bzz3 = yy + bzz3_part; // 24
let zz3 = zz.double() + zz; // 26, 27
let bxz_part = (C::EQUATION_B * xz_pairs) - (zz3 + xx); // 25, 28, 29
let bxz3_part = bxz_part.double() + bxz_part; // 30, 31
let xx3_m_zz3 = xx.double() + xx - zz3; // 32, 33, 34
ProjectivePoint {
x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), // 35, 39, 40
y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), // 36, 37, 38
z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), // 41, 42, 43
}
}
/// Implements complete mixed addition for curves with `a = -3`
///
/// Implements the complete mixed addition formula from [Renes-Costello-Batina 2015]
/// (Algorithm 5). The comments after each line indicate which algorithm
/// steps are being performed.
///
/// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C> {
debug_assert_eq!(
C::EQUATION_A,
-C::FieldElement::from(3),
"this implementation is only valid for C::EQUATION_A = -3"
);
let xx = lhs.x * rhs.x; // 1
let yy = lhs.y * rhs.y; // 2
let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); // 3, 4, 5, 6, 7
let yz_pairs = (rhs.y * lhs.z) + lhs.y; // 8, 9 (t4)
let xz_pairs = (rhs.x * lhs.z) + lhs.x; // 10, 11 (y3)
let bz_part = xz_pairs - (C::EQUATION_B * lhs.z); // 12, 13
let bz3_part = bz_part.double() + bz_part; // 14, 15
let yy_m_bzz3 = yy - bz3_part; // 16
let yy_p_bzz3 = yy + bz3_part; // 17
let z3 = lhs.z.double() + lhs.z; // 19, 20
let bxz_part = (C::EQUATION_B * xz_pairs) - (z3 + xx); // 18, 21, 22
let bxz3_part = bxz_part.double() + bxz_part; // 23, 24
let xx3_m_zz3 = xx.double() + xx - z3; // 25, 26, 27
let mut ret = ProjectivePoint {
x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), // 28, 32, 33
y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), // 29, 30, 31
z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), // 34, 35, 36
};
ret.conditional_assign(lhs, rhs.is_identity());
ret
}
/// Implements point doubling for curves with `a = -3`
///
/// Implements the exception-free point doubling formula from [Renes-Costello-Batina 2015]
/// (Algorithm 6). The comments after each line indicate which algorithm
/// steps are being performed.
///
/// [Renes-Costello-Batina 2015]: https://eprint.iacr.org/2015/1060
fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C> {
debug_assert_eq!(
C::EQUATION_A,
-C::FieldElement::from(3),
"this implementation is only valid for C::EQUATION_A = -3"
);
let xx = point.x.square(); // 1
let yy = point.y.square(); // 2
let zz = point.z.square(); // 3
let xy2 = (point.x * point.y).double(); // 4, 5
let xz2 = (point.x * point.z).double(); // 6, 7
let bzz_part = (C::EQUATION_B * zz) - xz2; // 8, 9
let bzz3_part = bzz_part.double() + bzz_part; // 10, 11
let yy_m_bzz3 = yy - bzz3_part; // 12
let yy_p_bzz3 = yy + bzz3_part; // 13
let y_frag = yy_p_bzz3 * yy_m_bzz3; // 14
let x_frag = yy_m_bzz3 * xy2; // 15
let zz3 = zz.double() + zz; // 16, 17
let bxz2_part = (C::EQUATION_B * xz2) - (zz3 + xx); // 18, 19, 20
let bxz6_part = bxz2_part.double() + bxz2_part; // 21, 22
let xx3_m_zz3 = xx.double() + xx - zz3; // 23, 24, 25
let y = y_frag + (xx3_m_zz3 * bxz6_part); // 26, 27
let yz2 = (point.y * point.z).double(); // 28, 29
let x = x_frag - (bxz6_part * yz2); // 30, 31
let z = (yz2 * yy).double().double(); // 32, 33, 34
ProjectivePoint { x, y, z }
}
}