#![allow(clippy::needless_range_loop, clippy::op_ref)]
use crate::{point_arithmetic::PointArithmetic, AffinePoint, Field, PrimeCurveParams};
use core::{
borrow::Borrow,
iter::Sum,
ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign},
};
use elliptic_curve::{
bigint::{ArrayEncoding, Integer},
generic_array::ArrayLength,
group::{
self,
cofactor::CofactorGroup,
prime::{PrimeCurve, PrimeGroup},
Group, GroupEncoding,
},
ops::{BatchInvert, Invert, LinearCombination, MulByGenerator},
point::Double,
rand_core::RngCore,
sec1::{
CompressedPoint, EncodedPoint, FromEncodedPoint, ModulusSize, ToEncodedPoint,
UncompressedPointSize,
},
subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption},
zeroize::DefaultIsZeroes,
BatchNormalize, Error, FieldBytes, FieldBytesSize, PublicKey, Result, Scalar,
};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[derive(Clone, Copy, Debug)]
pub struct ProjectivePoint<C: PrimeCurveParams> {
pub(crate) x: C::FieldElement,
pub(crate) y: C::FieldElement,
pub(crate) z: C::FieldElement,
}
impl<C> ProjectivePoint<C>
where
C: PrimeCurveParams,
{
pub const IDENTITY: Self = Self {
x: C::FieldElement::ZERO,
y: C::FieldElement::ONE,
z: C::FieldElement::ZERO,
};
pub const GENERATOR: Self = Self {
x: C::GENERATOR.0,
y: C::GENERATOR.1,
z: C::FieldElement::ONE,
};
pub fn to_affine(&self) -> AffinePoint<C> {
<C::FieldElement as Field>::invert(&self.z)
.map(|zinv| self.to_affine_internal(zinv))
.unwrap_or(AffinePoint::IDENTITY)
}
pub(super) fn to_affine_internal(self, zinv: C::FieldElement) -> AffinePoint<C> {
AffinePoint {
x: self.x * &zinv,
y: self.y * &zinv,
infinity: 0,
}
}
pub fn neg(&self) -> Self {
Self {
x: self.x,
y: -self.y,
z: self.z,
}
}
pub fn add(&self, other: &Self) -> Self {
C::PointArithmetic::add(self, other)
}
fn add_mixed(&self, other: &AffinePoint<C>) -> Self {
C::PointArithmetic::add_mixed(self, other)
}
pub fn sub(&self, other: &Self) -> Self {
self.add(&other.neg())
}
fn sub_mixed(&self, other: &AffinePoint<C>) -> Self {
self.add_mixed(&other.neg())
}
fn mul(&self, k: &Scalar<C>) -> Self
where
Self: Double,
{
let k = Into::<C::Uint>::into(*k).to_le_byte_array();
let mut pc = [Self::default(); 16];
pc[0] = Self::IDENTITY;
pc[1] = *self;
for i in 2..16 {
pc[i] = if i % 2 == 0 {
Double::double(&pc[i / 2])
} else {
pc[i - 1].add(self)
};
}
let mut q = Self::IDENTITY;
let mut pos = C::Uint::BITS - 4;
loop {
let slot = (k[pos >> 3] >> (pos & 7)) & 0xf;
let mut t = ProjectivePoint::IDENTITY;
for i in 1..16 {
t.conditional_assign(
&pc[i],
Choice::from(((slot as usize ^ i).wrapping_sub(1) >> 8) as u8 & 1),
);
}
q = q.add(&t);
if pos == 0 {
break;
}
q = Double::double(&Double::double(&Double::double(&Double::double(&q))));
pos -= 4;
}
q
}
}
impl<C> CofactorGroup for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
FieldBytes<C>: Copy,
FieldBytesSize<C>: ModulusSize,
CompressedPoint<C>: Copy,
<UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
{
type Subgroup = Self;
fn clear_cofactor(&self) -> Self::Subgroup {
*self
}
fn into_subgroup(self) -> CtOption<Self> {
CtOption::new(self, 1.into())
}
fn is_torsion_free(&self) -> Choice {
1.into()
}
}
impl<C> ConditionallySelectable for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
#[inline(always)]
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Self {
x: C::FieldElement::conditional_select(&a.x, &b.x, choice),
y: C::FieldElement::conditional_select(&a.y, &b.y, choice),
z: C::FieldElement::conditional_select(&a.z, &b.z, choice),
}
}
}
impl<C> ConstantTimeEq for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn ct_eq(&self, other: &Self) -> Choice {
self.to_affine().ct_eq(&other.to_affine())
}
}
impl<C> Default for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn default() -> Self {
Self::IDENTITY
}
}
impl<C> DefaultIsZeroes for ProjectivePoint<C> where C: PrimeCurveParams {}
impl<C: PrimeCurveParams> Double for ProjectivePoint<C> {
fn double(&self) -> Self {
C::PointArithmetic::double(self)
}
}
impl<C> Eq for ProjectivePoint<C> where C: PrimeCurveParams {}
impl<C> From<AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn from(p: AffinePoint<C>) -> Self {
let projective = ProjectivePoint {
x: p.x,
y: p.y,
z: C::FieldElement::ONE,
};
Self::conditional_select(&projective, &Self::IDENTITY, p.is_identity())
}
}
impl<C> From<&AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn from(p: &AffinePoint<C>) -> Self {
Self::from(*p)
}
}
impl<C> From<PublicKey<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn from(public_key: PublicKey<C>) -> ProjectivePoint<C> {
AffinePoint::from(public_key).into()
}
}
impl<C> From<&PublicKey<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn from(public_key: &PublicKey<C>) -> ProjectivePoint<C> {
AffinePoint::<C>::from(public_key).into()
}
}
impl<C> FromEncodedPoint<C> for ProjectivePoint<C>
where
C: PrimeCurveParams,
FieldBytes<C>: Copy,
FieldBytesSize<C>: ModulusSize,
CompressedPoint<C>: Copy,
{
fn from_encoded_point(p: &EncodedPoint<C>) -> CtOption<Self> {
AffinePoint::<C>::from_encoded_point(p).map(Self::from)
}
}
impl<C> Group for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
{
type Scalar = Scalar<C>;
fn random(mut rng: impl RngCore) -> Self {
Self::GENERATOR * <Scalar<C> as Field>::random(&mut rng)
}
fn identity() -> Self {
Self::IDENTITY
}
fn generator() -> Self {
Self::GENERATOR
}
fn is_identity(&self) -> Choice {
self.ct_eq(&Self::IDENTITY)
}
#[must_use]
fn double(&self) -> Self {
Double::double(self)
}
}
impl<C> GroupEncoding for ProjectivePoint<C>
where
C: PrimeCurveParams,
FieldBytes<C>: Copy,
FieldBytesSize<C>: ModulusSize,
CompressedPoint<C>: Copy,
<UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
{
type Repr = CompressedPoint<C>;
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
<AffinePoint<C> as GroupEncoding>::from_bytes(bytes).map(Into::into)
}
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
Self::from_bytes(bytes)
}
fn to_bytes(&self) -> Self::Repr {
self.to_affine().to_bytes()
}
}
impl<C> group::Curve for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
{
type AffineRepr = AffinePoint<C>;
fn to_affine(&self) -> AffinePoint<C> {
ProjectivePoint::to_affine(self)
}
}
impl<const N: usize, C> BatchNormalize<[ProjectivePoint<C>; N]> for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
C::FieldElement: Invert<Output = CtOption<C::FieldElement>>,
{
type Output = [Self::AffineRepr; N];
#[inline]
fn batch_normalize(points: &[Self; N]) -> [Self::AffineRepr; N] {
let mut zs = [C::FieldElement::ONE; N];
let mut affine_points = [C::AffinePoint::IDENTITY; N];
batch_normalize_generic(points, &mut zs, &mut affine_points);
affine_points
}
}
#[cfg(feature = "alloc")]
impl<C> BatchNormalize<[ProjectivePoint<C>]> for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
C::FieldElement: Invert<Output = CtOption<C::FieldElement>>,
{
type Output = Vec<Self::AffineRepr>;
#[inline]
fn batch_normalize(points: &[Self]) -> Vec<Self::AffineRepr> {
let mut zs = vec![C::FieldElement::ONE; points.len()];
let mut affine_points = vec![AffinePoint::IDENTITY; points.len()];
batch_normalize_generic(points, zs.as_mut_slice(), &mut affine_points);
affine_points
}
}
fn batch_normalize_generic<C, P, Z, O>(points: &P, zs: &mut Z, out: &mut O)
where
C: PrimeCurveParams,
C::FieldElement: BatchInvert<Z>,
C::ProjectivePoint: Double,
P: AsRef<[ProjectivePoint<C>]> + ?Sized,
Z: AsMut<[C::FieldElement]> + ?Sized,
O: AsMut<[AffinePoint<C>]> + ?Sized,
{
let points = points.as_ref();
let out = out.as_mut();
for i in 0..points.len() {
zs.as_mut()[i].conditional_assign(&points[i].z, !points[i].z.ct_eq(&C::FieldElement::ZERO));
}
let zs_inverses = <C::FieldElement as BatchInvert<Z>>::batch_invert(zs).unwrap();
for i in 0..out.len() {
out[i] = C::AffinePoint::conditional_select(
&points[i].to_affine_internal(zs_inverses.as_ref()[i]),
&C::AffinePoint::IDENTITY,
points[i].z.ct_eq(&C::FieldElement::ZERO),
);
}
}
impl<C> LinearCombination for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
{
}
impl<C> MulByGenerator for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
{
fn mul_by_generator(scalar: &Self::Scalar) -> Self {
Self::generator() * scalar
}
}
impl<C> PrimeGroup for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
FieldBytes<C>: Copy,
FieldBytesSize<C>: ModulusSize,
CompressedPoint<C>: Copy,
<UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
{
}
impl<C> PrimeCurve for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
FieldBytes<C>: Copy,
FieldBytesSize<C>: ModulusSize,
CompressedPoint<C>: Copy,
<UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
{
type Affine = AffinePoint<C>;
}
impl<C> PartialEq for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).into()
}
}
impl<C> ToEncodedPoint<C> for ProjectivePoint<C>
where
C: PrimeCurveParams,
FieldBytesSize<C>: ModulusSize,
CompressedPoint<C>: Copy,
<UncompressedPointSize<C> as ArrayLength<u8>>::ArrayType: Copy,
{
fn to_encoded_point(&self, compress: bool) -> EncodedPoint<C> {
self.to_affine().to_encoded_point(compress)
}
}
impl<C> TryFrom<ProjectivePoint<C>> for PublicKey<C>
where
C: PrimeCurveParams,
{
type Error = Error;
fn try_from(point: ProjectivePoint<C>) -> Result<PublicKey<C>> {
AffinePoint::<C>::from(point).try_into()
}
}
impl<C> TryFrom<&ProjectivePoint<C>> for PublicKey<C>
where
C: PrimeCurveParams,
{
type Error = Error;
fn try_from(point: &ProjectivePoint<C>) -> Result<PublicKey<C>> {
AffinePoint::<C>::from(point).try_into()
}
}
impl<C> Add<ProjectivePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn add(self, other: ProjectivePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::add(&self, &other)
}
}
impl<C> Add<&ProjectivePoint<C>> for &ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn add(self, other: &ProjectivePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::add(self, other)
}
}
impl<C> Add<&ProjectivePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn add(self, other: &ProjectivePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::add(&self, other)
}
}
impl<C> AddAssign<ProjectivePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn add_assign(&mut self, rhs: ProjectivePoint<C>) {
*self = ProjectivePoint::add(self, &rhs);
}
}
impl<C> AddAssign<&ProjectivePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn add_assign(&mut self, rhs: &ProjectivePoint<C>) {
*self = ProjectivePoint::add(self, rhs);
}
}
impl<C> Add<AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn add(self, other: AffinePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::add_mixed(&self, &other)
}
}
impl<C> Add<&AffinePoint<C>> for &ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn add(self, other: &AffinePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::add_mixed(self, other)
}
}
impl<C> Add<&AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn add(self, other: &AffinePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::add_mixed(&self, other)
}
}
impl<C> AddAssign<AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn add_assign(&mut self, rhs: AffinePoint<C>) {
*self = ProjectivePoint::add_mixed(self, &rhs);
}
}
impl<C> AddAssign<&AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn add_assign(&mut self, rhs: &AffinePoint<C>) {
*self = ProjectivePoint::add_mixed(self, rhs);
}
}
impl<C> Sum for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(ProjectivePoint::IDENTITY, |a, b| a + b)
}
}
impl<'a, C> Sum<&'a ProjectivePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn sum<I: Iterator<Item = &'a ProjectivePoint<C>>>(iter: I) -> Self {
iter.cloned().sum()
}
}
impl<C> Sub<ProjectivePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn sub(self, other: ProjectivePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::sub(&self, &other)
}
}
impl<C> Sub<&ProjectivePoint<C>> for &ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn sub(self, other: &ProjectivePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::sub(self, other)
}
}
impl<C> Sub<&ProjectivePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn sub(self, other: &ProjectivePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::sub(&self, other)
}
}
impl<C> SubAssign<ProjectivePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn sub_assign(&mut self, rhs: ProjectivePoint<C>) {
*self = ProjectivePoint::sub(self, &rhs);
}
}
impl<C> SubAssign<&ProjectivePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn sub_assign(&mut self, rhs: &ProjectivePoint<C>) {
*self = ProjectivePoint::sub(self, rhs);
}
}
impl<C> Sub<AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn sub(self, other: AffinePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::sub_mixed(&self, &other)
}
}
impl<C> Sub<&AffinePoint<C>> for &ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn sub(self, other: &AffinePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::sub_mixed(self, other)
}
}
impl<C> Sub<&AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn sub(self, other: &AffinePoint<C>) -> ProjectivePoint<C> {
ProjectivePoint::sub_mixed(&self, other)
}
}
impl<C> SubAssign<AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn sub_assign(&mut self, rhs: AffinePoint<C>) {
*self = ProjectivePoint::sub_mixed(self, &rhs);
}
}
impl<C> SubAssign<&AffinePoint<C>> for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
fn sub_assign(&mut self, rhs: &AffinePoint<C>) {
*self = ProjectivePoint::sub_mixed(self, rhs);
}
}
impl<C, S> Mul<S> for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
S: Borrow<Scalar<C>>,
{
type Output = Self;
fn mul(self, scalar: S) -> Self {
ProjectivePoint::mul(&self, scalar.borrow())
}
}
impl<C> Mul<&Scalar<C>> for &ProjectivePoint<C>
where
C: PrimeCurveParams,
ProjectivePoint<C>: Double,
{
type Output = ProjectivePoint<C>;
fn mul(self, scalar: &Scalar<C>) -> ProjectivePoint<C> {
ProjectivePoint::mul(self, scalar)
}
}
impl<C, S> MulAssign<S> for ProjectivePoint<C>
where
Self: Double,
C: PrimeCurveParams,
S: Borrow<Scalar<C>>,
{
fn mul_assign(&mut self, scalar: S) {
*self = ProjectivePoint::mul(self, scalar.borrow());
}
}
impl<C> Neg for ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn neg(self) -> ProjectivePoint<C> {
ProjectivePoint::neg(&self)
}
}
impl<'a, C> Neg for &'a ProjectivePoint<C>
where
C: PrimeCurveParams,
{
type Output = ProjectivePoint<C>;
fn neg(self) -> ProjectivePoint<C> {
ProjectivePoint::neg(self)
}
}